首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
为了克服传统中枢模式发生器(Central pattern generator, CPG)关节空间控制方法的复杂性和局限性, 本文基于自学习中枢模式发生器模型, 提出了一套在线调制和融合多传感器信息的仿人机器人环境自适应行走控制方法.算法难点在于如何在机器人的工作空间将自学习CPG用于工作空间轨迹生成, 并使CPG参数直接和步态模式相关联.本文提出了利用自学习CPG来学习和实时生成机器人质心轨迹和脚掌轨迹的方法, 在线调节机器人步长、抬腿高度和步行速度等关键参数.参考生物反射行为, 利用传感反馈信息激发CPG以产生具有环境适应性的工作空间轨迹, 提升行走质量. 控制系统的参数通过优化算法来进一步改善行走性能.相比于传统的CPG关节空间法, 本文所采用的自学习CPG工作空间法不仅极大简化了CPG网络结构而且提高了仿人机器人行走的适应性.最后, 通过仿人机器人坡面适应性行走的仿真和实验, 验证了所提出控制策略的可行性和有效性.  相似文献   

2.
乔贵方  韦中  张颖  万其  宋光明 《机器人》2019,41(6):779-787
为实现3维蛇形机器人多模式运动控制,提出了一种基于双层级中枢模式发生器(CPG)的运动控制方法.该双层级CPG网络包含节律层和模式层,节律层的CPG神经元用于控制3维蛇形机器人的俯仰关节组和偏转关节组的相位关系,模式层的CPG神经元用于控制3维蛇形机器人关节组内各个关节的相位差及关节轨迹.首先,利用Kuramoto振荡器对CPG神经元进行建模,并确定CPG网络的层级结构和耦合拓扑;然后,基于蛇形约束曲线计算3维蛇形机器人侧滚运动、侧移运动、滑行运动及转向运动4种典型运动步态的控制参数;最后,通过联合仿真和实验验证该双层级CPG网络的控制性能.由实验结果可知,3维蛇形机器人的侧滚运动、侧移运动、滑行运动以及转向运动的实际速度分别能够达到3.9 cm/s、9.0 cm/s、2.1 cm/s和10.8°/s.因此,该方法能够有效地、灵活地控制3维蛇形机器人的多模式运动.  相似文献   

3.
中枢模式发生器(CPG)在六足机器人的运动步态控制中起着至关重要的作用。为了研究六足机器人的运动控制方法,首先基于仿生学原理设计了六足机器人的机械结构,并在虚拟样机软件ADAMS中搭建其三维模型;其次选择Hopf振荡器作为CPG单元,并改进了振荡器模型;然后设计了六足机器人的CPG网络拓扑结构,包含单腿关节映射函数方案和腿间CPG环形耦合网络方案,并对其进行了改进;最后通过ADAMS和MATLAB联合仿真实验,验证了所设计六足机器人的运动稳定性和CPG控制方案的可行性与有效性。仿真结果表明,该方法能够满足六足机器人不同运动步态的控制需求,对六足机器人的运动控制具有一定的实际应用价值。  相似文献   

4.
史瑞东  张秀丽  姚燕安 《机器人》2018,40(2):146-157
模仿具有多种运动模式的沙漠蜘蛛,设计了本体为双层六杆5R闭链机构的仿蜘蛛机器人,其中16个主动关节由直流伺服电机控制.提出了基于Hopf振荡器的中枢模式发生器(CPG)运动控制模型,用于实现仿蜘蛛机器人的翻滚、爬行、侧滚等多种运动模式以及步态切换.利用Matlab和ADAMS对仿蜘蛛机器人的多模式运动进行动力学仿真,结果表明机器人可实现连续平稳的翻滚、爬行、侧滚运动,验证了CPG仿生控制方法应用于闭链机器人多模式运动的可行性.  相似文献   

5.
胸鳍推进型机器鱼的CPG 控制及实现   总被引:1,自引:0,他引:1  
结合仿生游动机理,针对胸鳍推进型机器鱼提出了一种基于中枢模式发生器(CPG)的运动控制方法. 该模型采用一类振荡频率和幅值可以独立控制的非线性微分方程作为其神经元振荡器模型,通过最近相邻耦合的方 式,对n 个这样的神经元振荡器进行耦合,构建了仿生机器鱼的CPG 网络模型.证明了此模型单个神经元振荡器的 极限环的存在性、唯一性及稳定性.在此基础上,通过对胸鳍推进的运动学分析,导出机器人直游、倒游、胸鳍—尾 鳍协调运动等多种模式的运动控制方法.仿真及实验结果验证了此中枢模式发生器模型的可行性与所提控制方法的 有效性.  相似文献   

6.
为实现人和机器人握手运动的同步,提出了基于神经元振荡器同步控制的方法,并将此方法应用于 人和机器人握手的研究中.同时,在分析现有神经元振荡器特性的基础上,设计了一种新的人和机器人握手的神 经元振荡器,并将该神经元振荡器应用于同步控制方法中进行人和机器人握手的动力学仿真,仿真结果证明了该 控制方法的有效性.  相似文献   

7.
以蛇怪蜥蜴为仿生对象,设计了一种足式水上行走机器人.鉴于水面环境的复杂性,提出利用计算机仿真的方法构建足式水上行走机器人及其外界环境整个系统的数学模型.分析了现有的ZMP(zero moment point)算法难以适用足式水上行走机器人控制的原因,提出机器人的CPG(central pattern generator)模糊控制方法.设计了足式水上行走机器人的CPG控制器和模糊控制器,进行参数分析,完成了机器人整个控制系统的搭建,并进行了仿真验证.最后进行了机器人户外水上行走实验,测定了水上行走过程中的实时偏角.实验结果表明该控制方法有效.  相似文献   

8.
针对单神经元的Matsuoka振荡器的中枢模式发生器(CPG)模型只能输出持续高位的信号,不能实现控制六足机器人的三足步态规划的问题,提出通过模拟生物肌肉的特性,建立伸张肌神经元与收缩肌神经元相互抑制相互作用的双神经元的Matsuoka振荡器模型.通过试凑法与单参数分析法结合确定双神经元Matsuoka振荡器模型的参数...  相似文献   

9.
针对蛇形机器人中枢模式发生器(CPG)控制中控制信号以及传感信息缺少选择依据的问题,提出了一种融合了机械元的循环抑制CPG控制方法.首先,将蛇形机器人本体动力学方程改造为机械元引入循环抑制CPG模型.其次,提出了改进的Matsuoka神经元,从而使得神经元与机械元具有一致的表达形式.再次,分析了融入机械元的循环抑制CPG模型中的参数关系,并给出了控制信号和传感信息与CPG状态量关系的表达式.最后,利用仿真对所提出的方法进行了验证,并对产生结果进行了分析.该方法中蛇形机器人的控制信号与传感信息都具有明确的定义,且由于用机械元的物理结构代替了神经元的计算,降低了CPG的计算量.  相似文献   

10.
针对蛇形机器人采用的循环抑制CPG模型,为解决CPG控制模型中参数整定效率低、不稳定的问题,阐述基于CPG模型的蛇形搜救机器人控制系统总体方案的设计,提出一种基于遗传算法的CPG控制模型参数优化方法,实现链式CPG网络的节律输出。仿真实现蛇形搜救机器人各关节控制信号的有效输出,仿真结果表明,该方法具有高效、准确、稳定等优点,可有效应用于蛇形搜救机器人的步态控制。  相似文献   

11.
CPG (Central pattern generator) is a dynamical system of coupled nonlinear oscillators or neural networks inspired by a control mechanism in animal bodies. Without any rhythmic inputs, the CPG has the ability to produce oscillatory patterns. This paper presents a novel structure of a CPG network which can produce rhythmic motion that imitates movement of animals such as snake and lamprey. The focus is on the locomotion control of a snake-like robot, where phase oscillator has been adopted as the dynamical model to control the harmonic motion of the CPG network. There are two main points addressed in this paper: (1) simple network structure of unidirectional coupling oscillators, and (2) a single parameter to control the body shape and to control the forward and backward movement of the snake-like robot. The proposed CPG network is designed to have a simple structure with less complexity, less mathematical computation, fast convergence speed and exhibit limit cycle behavior. In addition, a new parameter, τ is introduced to control the smoothness of the CPG output as well as the speed of the snake-like robot. Simulation and experimental results show that the proposed CPG network can be used to control the serpentine locomotion of a snake-like robot.  相似文献   

12.
CPG-based control of a turtle-like underwater vehicle   总被引:1,自引:0,他引:1  
This paper presents biologically inspired control strategies for an autonomous underwater vehicle (AUV) propelled by flapping fins that resemble the paddle-like forelimbs of a sea turtle. Our proposed framework exploits limit cycle oscillators and diffusive couplings, thereby constructing coupled nonlinear oscillators, similar to the central pattern generators (CPGs) in animal spinal cords. This paper first presents rigorous stability analyses and experimental results of CPG-based control methods with and without actuator feedback to the CPG. In these methods, the CPG module generates synchronized oscillation patterns, which are sent to position-servoed flapping fin actuators as a reference input. In order to overcome the limitation of the open-loop CPG that the synchronization is occurring only between the reference signals, this paper introduces a new single-layered CPG method, where the CPG and the physical layers are combined as a single layer, to ensure the synchronization of the physical actuators in the presence of external disturbances. The key idea is to replace nonlinear oscillators in the conventional CPG models with physical actuators that oscillate due to nonlinear state feedback of the actuator states. Using contraction theory, a relatively new nonlinear stability tool, we show that coupled nonlinear oscillators globally synchronize to a specific pattern that can be stereotyped by an outer-loop controller. Results of experimentation with a turtle-like AUV show the feasibility of the proposed control laws.  相似文献   

13.
Neural Processing Letters - In general, the equivalent amplitude values and the specific phase differences between the oscillators/neurons are desired to obtain the smooth movements in the CPG...  相似文献   

14.
Biologically inspired control approaches based on central pattern generators (CPGs) with neural oscillators have been drawing much attention for the purpose of generating rhythmic motion for biped robots with human-like locomotion. This article describes the design of a neural-oscillator-based gait-rhythm generator using a network of Matsuoka oscillators to generate a walking pattern for biped robots. This includes the proper consideration of the oscillator’s parameters, such as a time constant for the adaptation rate, coupling factors for mutual inhibitory connections, etc., to obtain a stable and desirable response from the network. The article examines the characteristics of a CPG network with six oscillators, and the effect of assigning symmetrical and asymmetrical coupling coefficients among oscillators within the network structure under different possible inhibitions and excitations. The kinematics and dynamics of a five-link biped robot have been modeled, and its joints are actuated through simulation by the torques output from the neural rhythm generator to generate the trajectories for hip, knee, and ankle joints. The parameters of the neural oscillators are tuned to achieve flexible trajectories. The CPG-based control strategy is implemented and tested through a simulation. This work was presented in part at the 12th International Symposium on Artificial Life and Robotics, Oita, Japan, January 25–27, 2007  相似文献   

15.
In this paper, we propose a method to control gait generation and walking speed control for an autonomous decentralized multi-legged robot by using a wave Central Pattern Generator (CPG) model. The wave CPG model is a mathematical model of nonlinear oscillators and generates rhythmic movements of the legs. The gait generation and the walking speed control are achieved by controlling the virtual energy of the oscillators (Hamiltonian). A real robot experiment showed the relationship to the Hamiltonian, the actual energy consumption and the walking speed, and the effectiveness of the proposed method was verified.  相似文献   

16.
This paper proposes a CPG-based control architecture using a frequency-adaptive oscillator for undulatory locomotion of snake-like robots. The control architecture consists of a network of neural oscillators that generates desired oscillatory output signals with specific phase lags. A key feature of the proposed architecture is a self-adaptation process that modulates the parameters of the CPG to adapt the motion of the robot to varying coefficients of body-ground friction. This process is based on the frequency-adaptation rule of the oscillator that is designed to learn the periodicity of sensory feedback signals. It has an important meaning of establishing a closed-loop CPG much more robust against environmental and/or system parameter changes. We verify the validity of the proposed locomotion control system employing a simulated snake-like robot moving over terrains with different friction coefficients with a constant velocity.  相似文献   

17.
This paper presents a central pattern generator (CPG) and vestibular reflex combined control strategy for a quadruped robot. An oscillator network and a knee-to-hip mapping function are presented to realize the rhythmic motion for the quadruped robot. A two-phase parameter tuning method is designed to adjust the parameters of oscillator network. First, based on the numerical simulation, the influences of the parameters on the output signals are analyzed, then the genetic algorithm (GA) is used to evolve the phase relationships of the oscillators to realize the basic animal-like walking pattern. Moreover, the animal’s vestibular reflex mechanism is mimicked to realize the adaptive walking of the quadruped robot on a slope terrain. Coupled with the sensory feedback information, the robot can walk up and down the slope smoothly. The presented bio-inspired control method is validated through simulations and experiments with AIBO. Under the control of the presented CPG and vestibular reflex combined control method, AIBO can cope with slipping, falling down and walk on a slope successfully, which demonstrates the effectiveness of the proposed walking control method.  相似文献   

18.
《Advanced Robotics》2013,27(1-2):19-43
This paper deals with the construction and control of a turtle-like underwater robot with four mechanical flippers. Each flipper consists of two joints generating a rowing motion by a combination of lead-lag and feathering motions. With cooperative movements of four flippers, the robot can propel and maneuver in any direction without rotation of its main body and execute complicated three-dimensional movements, including ascending, submerging, rolling and hovering. The control architecture is constructed based on a central pattern generator (CPG). A model for a system of coupled nonlinear oscillators is established to construct a CPG and has been successfully applied to the eight-joint turtle-like robot. The CPGs are modeled as nonlinear oscillators for joints and inter-joint coordination is achieved by altering the connection weights between joints. Rowing action can be produced by modulating the control parameters in the CPG model. The CPG-based method performs elegant and smooth transitions between swimming gaits, and enhanced adaptation to the transient perturbations due to nonlinear characteristics. The effectiveness of the proposed method is confirmed via simulations and experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号