首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
为了解钢筋混凝土柱大偏心受压性能的尺寸效应,对2组不同偏心距的几何尺寸相似的钢筋混凝土柱进行了大偏心受压破坏试验,偏心距分别为0.6h0和0.9h0,截面几何尺寸分别为200 mm×200 mm、400 mm×400 mm、800 mm×800 mm.分析研究其破坏形态、承载力、截面应变分布规律、变形能力及曲率随尺寸变化的规律.研究结果表明:相同偏心距下,不同尺寸的钢筋混凝土柱大偏心受压破坏形态和横截面应变分布规律基本相同,其尺寸效应不明显;承载力和变形能力存在明显尺寸效应,随着截面尺寸的增大,其极限承载力与规范计算值的相对误差增大,变形能力减弱.  相似文献   

2.
为揭示钢筋高强混凝土柱的尺寸效应规律,进行了不同几何尺寸、不配置箍筋的钢筋高强混凝土柱轴心受压性能试验,对比分析了不同几何尺寸试件的破坏特征、名义应力-应变曲线、承载力、变形及刚度.结果表明,未设置箍筋的钢筋高强混凝土柱轴心受压承载力、破坏特征和变形能力表现出一定的尺寸效应。  相似文献   

3.
为减小尺寸效应影响,了解符合实际工程的钢筋再生混凝土柱压弯性能,进行了4根截面尺寸为600 mm×600 mm、不同再生粗骨料取代率、不同配箍率的钢筋混凝土方形截面柱大偏心受压重复荷载试验,研究了其受压破坏形态、承载力、侧向受弯刚度、钢筋及混凝土应变规律.结果表明:钢筋再生混凝土大偏心受压柱的破坏过程、破坏形态、侧向受弯刚度退化、钢筋和混凝土的应变与普通钢筋混凝土柱的区别不明显.参照现行《混凝土结构设计规范》(GB50010—2010)的相关计算公式,计算钢筋再生混凝土大偏心受压柱承载力,其计算结果与试验结果符合较好.  相似文献   

4.
为了解重复荷载下钢筋混凝土柱轴心受压性能的尺寸效应,按照相似关系设计了3组正方形截面钢筋混凝土柱试件,其几何尺寸分别为:400mm×400mm×1 200mm、600mm×600mm×1 800mm、800mm×800mm×2 400mm,并对其进行了轴压破坏试验。试验中对比分析了各试件的破坏特征、裂缝发展过程、承载力、峰值应力、峰值应变以及刚度等。结果表明,在试验的尺寸范围内,试件的轴压性能存在明显的尺寸效应。  相似文献   

5.
圆钢管高强再生混凝土柱重复加载偏压试验   总被引:2,自引:2,他引:0  
为研究圆钢管高强再生混凝土柱偏心受压性能,完成了4个试件的单调重复加载试验.4个试件分为两组,第一组试件包括圆钢管普通混凝土柱和圆钢管再生混凝土柱,偏心距100 mm;第二组试件与第一组试件相同,区别在于偏心距为160 mm.通过试验,得到了荷载-位移曲线、荷载-应变曲线、应变沿截面高度分布情况,分析了各试件的破坏特征、承载力、刚度、延性和耗能等.利用国内外相关规程对圆钢管再生混凝土偏心受压柱进行承载力计算,并与试验结果比对.研究表明:圆钢管高强再生混凝土偏心受压柱的损伤破坏过程与普通混凝土柱相似,承载能力和变形性能较普通混凝土试件有所提高;截面应变分布与平截面假定符合较好;随着偏心距增大,试件承载力降低,刚度退化加剧,变形能力增强.  相似文献   

6.
为研究型钢活性粉末混凝土(reactive powder concrete,RPC)柱大偏心受压力学性能,采用足尺试件进行大偏心受压试验.制作了6根截面尺寸为300 mm×350 mm,高度为3 000 mm的型钢RPC柱,进行大偏压承载力性能试验,观察受力过程及破坏形态,测量极限承载力、侧向挠度及截面应变.试验结果表明,该组合结构具有较高的承载力及良好的变形能力,受压区RPC基本符合平截面假定,柱的极限承载力随含钢率的增加而提高,随偏心距的增大而降低.基于平截面假定,考虑截面受拉区RPC拉应力的贡献,建立了足尺型钢RPC柱的极限承载力计算公式,可供工程设计时参考.  相似文献   

7.
介绍了机制砂再生粗骨料混凝土配筋柱的小偏心和大偏心受压承载力试验成果,分析了长细比和初始偏心距分别对配筋柱正截面应变分布、混凝土和钢筋应变、侧向挠度、破坏形态、极限承载力等的影响规律.通过与现行规范相应计算公式的计算结果对比,基于混凝土材料性能与结构受力的相关机理,系统分析了机制砂再生粗骨料混凝土配筋柱偏心受压承载力的主控因素,并对偏心受压承载力的计算提出了建议.  相似文献   

8.
巨型钢管混凝土分叉柱节点压弯性能试验研究   总被引:1,自引:0,他引:1  
为了解决构造措施对巨型钢管混凝土分叉柱节点承载力影响程度的问题,以在建工程北京"中国尊"为工程背景,进行了2个不同构造的分叉柱节点偏心受压重复荷载试验,研究了其受压破坏特征、承载力、侧向抗弯刚度、侧向变形及应变规律.结果表明:试件的破坏形态以弯曲破坏为主,破坏位置与分叉柱节点刚度分布有关,且侧向变形主要发生在侧向位移较大的柱肢部分;在钢管屈服之前,柱肢异形截面符合平截面假定,钢材屈服以后基本符合平截面假定;在忽略横向构造措施承载力贡献的情况下,仅考虑钢管的约束效应计算承载力与实测值相差较大,说明受压区钢管及横隔板的组合约束效应更强.  相似文献   

9.
500MPa级钢筋混凝土偏心受压柱受力性能的试验研究   总被引:1,自引:0,他引:1  
通过对9根350 mm×200 mm×2200 mm 500 MPa级钢筋混凝土偏心受压柱受力性能的试验,分析了偏心受压柱荷载—挠度曲线、荷载—钢筋应变曲线、荷载—混凝土压应变曲线以及破坏形态的特点.试验研究结果表明,500 MPa级钢筋在柱中与混凝土协同工作性能较好,其强度得到了充分发挥.在试验和理论分析的基础上,提出了500 MPa级钢筋在混凝土柱中的强度设计取值fy=450 MPa和受压承载力计算公式的建议.  相似文献   

10.
为形成集承重、轻质、节能于一体的多层建筑结构体系,推广全轻混凝土在结构体系中的应用,需对全轻混凝土柱偏心受压性能进行试验研究.试验共设计偏心受压柱6根,对比分析不同配筋、不同偏心距对偏心受压柱的破坏形态、变形特点和承载性能的影响.试验结果表明,全轻混凝土偏心受压柱破坏特征、挠曲模式及截面应变分布与普通混凝土柱基本一致,而且承载力高、延性好,全轻混凝土可作为结构材料替代普通混凝土.  相似文献   

11.
为研究玄武岩纤维的加入对高强自密实混凝土长柱受力性能的改善作用,以玄武岩纤维体积掺量0.1%和0.2%、长度15 mm和30 mm为参数,设计制作了10个长细比为6的高强自密实混凝土长柱,进行偏心受压试验。结果表明:玄武岩纤维的加入,可明显改善高强自密实混凝土柱偏心受压的受力性能、延性;大、小偏心受压构件开裂荷载分别提升20.7%、11.8%,极限承载力最大增幅为18.2%、16.7%;大、小偏心构件受压过程中,玄武岩纤维的加入使应力峰值对应的混凝土应变受到较为显著的影响,当达到大极限承载力时,最大的拉、压应变下降25.0%、15.0%;由于玄武岩纤维的作用,大偏心受压试件达到极限承载力时,跨中最大挠度提升7.6%,提高了构件变形能力,但纤维长度、体积掺量改变引起的挠度效应不大。  相似文献   

12.
CFRP加固混凝土柱轴压性能尺寸效应试验分析   总被引:3,自引:2,他引:1  
为了研究碳纤维增强复合材料(CFRP)加固钢筋混凝土柱轴压性能的尺寸效应,设计了3组30根几何相似的CFRP加固钢筋混凝土柱,对其进行了轴心受压破坏试验.试验参数主要包括构件尺寸、钢筋配置和加载方式,研究了CFRP加固混凝土柱在轴压荷载下的破坏形态、极限强度、峰值应力、变形能力和残余变形等性能与构件尺寸的关系.研究结果表明:相同尺寸的CFRP加固钢筋混凝土柱比素混凝土柱的极限强度有不同程度的提高;CFRP加固钢筋混凝土柱的峰值应力随着尺寸的增大,呈先增大后减小的趋势,归一化轴向变形能力和残余变形随着构件尺寸的增加逐渐减小;不同的加载方式对于CFRP加固钢筋混凝土柱的承载力和极限位移影响不大.  相似文献   

13.
通过小偏心受压性能试验对比研究3根的天然骨料混凝土柱和3根同强度全再生砖混骨料混凝土柱,强度分别为C25、C30和C35. 对6根柱进行加载试验,分析再生砖混骨料混凝土柱相比于同强度天然骨料混凝土柱在受力过程、破坏特征、变形能力与承载力等方面的差异. 试验发现,再生砖混骨料混凝土柱在小偏心加载至破坏的过程中,具有与天然骨料混凝土柱相似的3个受力阶段,且符合平截面假定. 与同强度的天然骨料混凝土柱相比,变形较大,但再生砖混骨料混凝土柱的极限承载力略高,原因可能在于两者轴心抗压强度的差异.  相似文献   

14.
为了解决氯盐环境下混凝土结构中钢筋的锈蚀问题,采用新型的不锈钢代替传统碳素钢筋,开展不锈钢筋小偏压柱试验研究,探讨不锈钢筋混凝土柱小偏心受压的破坏过程以及各阶段的变形与裂缝发展规律,分析不锈钢筋的本构模型,开展小偏心受压构件极限承载能力的理论计算.结果表明:不锈钢筋混凝土小偏压柱跨中截面应变分布符合平截面假定,受力过程可以分为弹性、开裂、破坏3个阶段;不锈钢筋混凝土柱小偏心受压破坏模式与碳素钢筋小偏压柱相同,但变形较大,与碳素钢筋偏压柱相比具有更好的延性;不锈钢筋本构模型采用双斜线模型时与试验结果符合较好,且具有一定的安全储备,建议受压设计时予以采用;提升混凝土强度能够提高柱子受压极限承载能力,针对本文的不锈钢筋C70左右的混凝土提升效果较好.  相似文献   

15.
To investigate the strength and deformation behavior of plain high-strength concrete (HSC) under multiaxial stress states,a large static-dynamic true triaxial machine was employed,and multiaxial tests were performed on 100 mm×100 mm×100 mm cubes concrete specimens.Friction-reducing pads were three-layer plastic membranes with glycerine in-between for the compressive loading plane.The tensile loading plane of concrete samples was processed by attrition machine,and then the samples were glued up with the loading plate with structural glue.Failure modes of specimens were described.The principal static compressive strengths,strains at the peak stress and stress-strain curves were measured,and the influence of stress ratios on them was analyzed as well.Experimental results show that the ratio of the compressive strength σ3f over the uniaxial compressive strength fc depends on brittleness-stiffness of concrete besides stress state and stress ratios.The formula of Kupfer-Gerstle’s and Ottosen’s failure criterion for plain HSC under biaxial compression and multiaxial stress state is proposed respectively.  相似文献   

16.
通过8根轴压、6根小偏压箍筋约束高强砼短柱的试验,研究了箍筋约束作用对单轴受压时应力--应变关系及相关参数的影响。分析了箍筋形式、配箍率等参数对柱延性的作用,并对小偏压柱强度和变形性能进行了探索。在试验研究的基础上,提出了约束高强砼的应力-应变关系全曲线及相关参数的计算表达式。  相似文献   

17.
为了研究钢骨-圆钢管高强混凝土组合长柱轴心受压的力学性能,采用ABAQUS软件建立钢骨-圆钢管高强混凝土组合长柱轴心受压有限元分析模型,讨论了组合长柱典型试件荷载-变形关系曲线,不同受力阶段应力分布规律及最终破坏模态.通过进行参数分析,考虑不同参数对组合长柱轴心受压力学性能的影响,利用回归分析得到组合长柱轴心受压承载力简化计算公式.结果表明,混凝土强度、配骨指标和钢材强度对组合长柱轴心受压承载力影响较大,长细比影响较小,简化公式计算结果与有限元计算结果及试验结果吻合良好.  相似文献   

18.
The glass fiber reinforced polymer (GFRP) tube is an effective material that can increase the bearing capacity and ductility of concrete.To study the mechanical behavior of this composite structure,twe...  相似文献   

19.
为研究碳纤维增强树脂复合材料(CFRP)约束钢管高强混凝土短柱在轴心受压作用下的极限承载力,通过CFRP约束钢管高强混凝土轴压短柱破坏过程工作机制的探讨,分析了CFRP约束钢管高强混凝土与CFRP约束钢管混凝土构件的主要区别与联系,为CFRP约束钢管高强混凝土短柱承载力的极限分析奠定了基础。基于极限平衡法,对高强混凝土、钢管和CFRP进行了应力分析,推导得到了CFRP约束钢管高强混凝土短柱的理论计算公式,将理论计算结果与试验实测值相比较,验证了理论公式的正确性。最后将理论计算结果随CFRP层数和钢管壁厚的变化规律进行了分析,研究表明:与CFRP约束钢管混凝土相比,CFRP约束钢管高强混凝土中CFRP约束效果较差,而对于CFRP约束钢管高强混凝土轴压短柱承载力的提高,厚壁钢管有较大优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号