首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
提出了一种改进型的高精度电荷泵电路,并提出了基于此高精度电荷泵电路的低功耗Σ-Δ A/D 转换器的构建方法.电路经Star-Hspice模拟,取得了满意的模拟结果.  相似文献   

2.
东振中  邹雪城  雷鑑铭  刘三清 《微电子学》2002,32(2):150-151,156
针对常用的电荷泵电路存在的电荷泄漏和充放电流失配等不利因素,设计了一种全差分高精度电荷泵,降低了锁相环(PLL)的相位偏差。  相似文献   

3.
为了有效降低传统电荷泵电路的充放电过冲电流,提高电荷泵输出控制电压的稳定性,提出、设计并实现了一种高速低过冲的电荷泵结构,该电路适用于高速锁相环及时钟数据恢复电路.电路在电源电压为1.2 V的0.13 μm CMOS工艺下设计实现,并对版图数据进行了HSPICE模拟,其结果表明,电路在2.5 GHz的速度下能很好的工作,同时电流过冲相比传统电荷泵下降了70%.  相似文献   

4.
江玮  唐守龙  陆生礼   《电子器件》2007,30(1):167-169,173
设计了一种减小PLL锁定时间的新型电荷泵.该电荷泵电路由频率到无死区鉴频鉴相器电路(PFD)、电压转换电路(FVC)、电压到电流转换电路(VCC)以及一些逻辑控制电路和高精度低失配电荷泵组成.基于Chartered 0.25 μm CMOS工艺库的Spectre仿真结果,锁相环的锁定时间降低到原来的50%.  相似文献   

5.
齐家月  蒋涛 《微电子学》1998,28(5):316-320
介绍了逻辑加密卡模拟宏单元电路的结构,详细阐述了该电路中EEPROM及电荷泵的工作原理。  相似文献   

6.
随着电源电压的不断降低和芯片面积的不断减小,电荷泵的效率已成为MOS电荷泵电路设计过程中最为人们关心的问题之一,由于传统的Dickson MOS电荷泵在每个传输管上都有问值电压的损失,使得它的效率很低,为了解决这一问题,各种电荷泵电路在不断地出现,四相位MOS电荷泵电路自发明以来,得到了广泛的应用,但是它需要产生四个时钟,增大了面积;更为重要的是,由于四相位电荷泵要求在一个周期内提供四个互不重叠的高电平,从而限制了时钟频率的提高。本文在四相位电荷泵的基础上,提出了一种新型的二相位的电荷泵电路,解决了提高效率和增加芯片面积以及时钟频率提升的矛盾。  相似文献   

7.
电荷泵电路的分析、设计和提高性能的研究   总被引:4,自引:0,他引:4  
在分析一般电荷泵电路的基础上,提出一种新的电荷泵结构,并对它的工作原理及有关性能进行了详细分析研究。SPICE模拟结果表明,与原来的电路相比,在输出电压为15 V的情况下,电荷泵的上升时间下降了42 % ,负载能力提高了125 % ,为增大EEPROM 的容量和提高数据的擦写速度提供了有利条件  相似文献   

8.
电荷泵电路的动态分析   总被引:2,自引:0,他引:2  
详细分析了电荷泵的动态工作特性 ,给出了电荷泵电压上升时间及瞬态电流与电路的关系。基于这些分析 ,可以得到电荷泵的功耗来源和电压上升与充电电容的关系 ,同时还对电荷泵电路的电压产生的限制作出了分析。文末给出了整个分析结果与 SPICE模拟结果的对照 ,从结果可以看出整个分析大致反应了电荷泵的实际工作情况 ,正确地体现了电荷泵的工作原理。  相似文献   

9.
一种新型电荷泵电路的设计   总被引:5,自引:1,他引:4  
文章提出了一种新的全差分电荷泵结构,与传统电荷泵电路相比,这个电路具有输出范围大和无跳跃现象的优点,同时还可以有效地解决电荷泄漏和充放电失配等问题。  相似文献   

10.
为了降低电荷泵电路启动过程中的峰值电流,本文提出了一种具有低峰值电流的电荷泵电路。该电路中采用N-相位时钟电路,产生N个相位不交叠的时钟信号,使得电荷泵启动过程中时钟电路仅对一个电容进行充放电,从而有效减少了电源峰值电流。Hspice仿真结果表明,电荷泵电路级数为4时,所提出的电路能够将电源峰值电流减少约50%。  相似文献   

11.
对电源及温度不敏感的电流可调的CMOS电荷泵电路的设计   总被引:1,自引:0,他引:1  
设计了一种电流可调的CMOS电荷泵电路,其中采用了带隙基准源、低drop-out调压器及电容式直流-直流电压升压器为电荷泵电路提供电源电压,此电压不受外部供电电压及温度变化的影响;同时,电荷泵电路中的参考电流源本身也对温度变化不敏感.电路设计采用0.18μm 1.8V标准的数字CMOS工艺.模拟结果表明电路性能令人满意.  相似文献   

12.
对电源及温度不敏感的电流可调的CMOS电荷泵电路的设计   总被引:3,自引:0,他引:3  
设计了一种电流可调的CMOS电荷泵电路 ,其中采用了带隙基准源、低drop out调压器及电容式直流 直流电压升压器为电荷泵电路提供电源电压 ,此电压不受外部供电电压及温度变化的影响 ;同时 ,电荷泵电路中的参考电流源本身也对温度变化不敏感 .电路设计采用 0 18μm 1 8V标准的数字CMOS工艺 .模拟结果表明电路性能令人满意.  相似文献   

13.
适合低功耗工作的MOS电荷泵   总被引:2,自引:0,他引:2  
徐志伟  肖斌  闵昊  郑增钰 《微电子学》2000,30(2):136-140
提出了两种适合在低功耗条件下工作的电荷泵电路,预充电电荷泵采用预充电机制提高了电荷泵的工作效率;而Domino电荷泵则采用内部电路控制电荷泵充电电容的充放电,不仅降低了功耗,同时均化了瞬态功耗.这解决了电荷泵在充电期间功耗过大的问题,使它们不仅能适用于有较强电源的电路,也可以在无源或低功耗的环境下工作.  相似文献   

14.
一种用于高速锁相环的新型CMOS电荷泵电路   总被引:5,自引:0,他引:5  
吴珺  胡光锐 《微电子学》2003,33(4):362-364,368
提出了一种适用于高速锁相环电路的新型CMOS电荷泵电路。该电路利用正反馈电路提高电荷泵的转换速度,利用高摆幅镜像电流电路提高输出电压的摆动幅度,消除了电压跳变现象。电路设计和H-SPICE仿真基于BL 1.2μm工艺BSIM3、LEVEL=47的CMOS库,电源电压为2V,功耗为0.1mW。仿真结果表明,该电路可以很好地应用于高速锁相环电路。  相似文献   

15.
高速PLL电路中的电荷泵电路设计   总被引:3,自引:3,他引:0  
提出了一种适用于USB2.0高速模式480MHz时钟产生的单片锁相环(PLL)电路中的新型电荷泵电路设计。电路设计是基于TSMC公司的0.25um CMOS混合信号模型,采用了正反馈及与电源无关的带隙基准设计方法.着重解决传统电荷泵电路设计中存在的电荷注入现象(Charge Injection)。仿真结果表明本文的设计方案提高了电路的开关速度,符合480MHz速度的PLL对电荷泵电路的要求。  相似文献   

16.
《电子与封装》2017,(7):21-24
针对现有电荷泵存在的体效应、电荷回流等问题,提出一种高增益低纹波的电荷泵电路。该电荷泵采用两路互补的结构,减小了输出电压纹波;使用电位选择电路消除体效应,并使用两相低电平不交叠时钟避免电荷回流,提高了电压增益和转换效率。Hspice仿真结果表明,在级数同为5级和电流负载相同的情况下,文中提出的电荷泵相比现有电荷泵具有更高的输出电压和更小的电压纹波。  相似文献   

17.
提出一种适用于单电源,低电压供电的Flash Memory的负高压电荷泵的实现方法。在分析传统电荷泵工作原理的基础上.结合Flash工作电压和参数要求,提出三阱工艺,无阈值损失的负高压电荷泵电路结构。最后在0.22μmFlash工艺下给出测试结果。  相似文献   

18.
基于Dickson电荷泵结构,提出了一种适用于反熔丝现场可编程门阵列(FPGA)的新型高效电荷泵电路,实现了电荷泵的快速启动。通过采用时钟信号升压电路,减少了电荷泵级数,并减小了电路总体面积和功耗。仿真结果显示,在2.5 V的工作电压和整体电路全负载的条件下,整体电路的启动时间约为20μs,可稳定输出电压5.46 V,工作电流约为618μA。采用0.18μm CMOS工艺流片并对其进行编程和测试,结果显示FPGA电路编程成功,功能正确,与仿真结果一致,表明了此电荷泵结构的可行性和实用性。  相似文献   

19.
杜占坤  郭慧民  陈杰   《电子器件》2007,30(6):2032-2035
为提高锁相环中自校准电荷泵电路的稳定性,提出了一种改进型宽摆幅自校准CMOS电荷泵电路.该电路通过引入宽摆幅自校准反馈回路,使电荷泵在输出电压变化范围较大时,UP/DOWN两个开关电流完全匹配,而且该电路不需要专门的频率补偿即可确保绝对稳定.该电荷泵采用0.25μm CMOS混合信号工艺实现.当供电电压2.5V,电荷泵输出节点电压在0.3~2.2V范围内变化时,UP和DOWN电流差值小于2%.  相似文献   

20.
锁相环中高性能电荷泵的设计   总被引:2,自引:4,他引:2  
设计了一种结构新颖的动态充放电电流匹配的电荷泵电路,该电路利用一种放电电流对充电电流的跟随技术,使充放电电流达到较好匹配,同时,在电荷泵中增加差分反相器,提高电荷泵的速度。采用Istsilicon 0.25μmCMOS工艺进行仿真,结果显示:输出电压在0.3—2.2V之间变化时,电荷泵的充放电电流处处相等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号