首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study presents the chemical and mechanical compatibility of the proton conducting electrolyte La0.995Ca0.005NbO4 (LCNO) with the LSM, LSCM and BSCF cathodes and the electrochemical performance of symmetrical cells based on LCNO. After annealing at high temperature the electrolyte-cathode mixtures in air and wet air, the obtained products were analyzed by X-ray powder diffraction (XRPD). The microstructure of the cathode and electrolyte materials and the interfaces were observed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDX). The results show that LSCM cathode is chemically and mechanically stable with the LCNO electrolyte although the BSCF cathode reacts with it. Cation diffusion was observed between LSM cathode and LCNO electrolyte after the heat treatment of their mixture at T = 1150 °C. The electrochemical study performed on symmetrical cells revealed that the LSCM cathode presents the lowest value of area specific resistance (ASR) compared to the ones of the LSM and BSCF cathodes: ASRLSCM = 35 Ω cm2; ASRLSM = 57 Ω cm2; ASRBSCF = 416 Ω cm2 (in humidified air at 750 °C). Finally, a CER-CER approach was used in order to minimize the polarisation resistance of the LSM cathode by mixing LSM and LCNO in different volumetric ratios. The lowest value of ASR for LSM-based composite cathode was obtained by adding 50 vol.% of LCNO to LSM cathode (ASRLSM/LCNO = 22 Ω cm2 in humidified air at 750 °C).  相似文献   

2.
A composite of NiO–BaZr0.1Ce0.7Y0.2O3−δ (NiO-BZCY) was successfully prepared by a simple one-step-combustion process and applied as an anode for solid oxide fuel cells based on stable La2Ce2O7 (LCO) electrolyte. A high open circuit voltage of 1.00 V and a maximum power density of 315 mW cm−2 were obtained with NiO-BZCY anode and LCO electrolyte when measured at 700 °C using humidified hydrogen fuel. SEM-EDX and Raman results suggested that a thin BaCeO3-based reaction layer about 5 μm in thickness was formed at the anode/electrolyte interface for Ba cations partially migrated from anode into the electrolyte film. Impedance spectra analysis showed that the activation energy for LCO conductivity differed with the anode materials, about 52.51 kJ mol−1 with NiO-BZCY anode and 95.08 kJ mol−1 with NiO-LCO anode. The great difference in these activation energies might suggest that the formed BaCeO3 reaction layer could promote the proton transferring numbers of LCO electrolyte.  相似文献   

3.
The fabrication process for anode-supported thin-film solid oxide fuel cells (SOFCs) was investigated by using scalable and cost-effective methods. The anode functional layer (AFL) was introduced on the surface of the substrate to stably deposit the thin-film electrolyte. In previous studies, the AFL has been generally designed to increase the catalytic activity; however, in this study, additional design parameters including the roughness and density were controlled to achieve a pinhole-free thin-film electrolyte and structural stability. Through the developed process, button and large-sized cells were fabricated, and the electrochemical performance evaluation showed potential power density and impedance values at relatively low operating temperature. Microstructural analyses showed that each layer of the AFL, electrolyte, and cathode was uniformly coated on the substrate. The thin-film electrolyte was densely deposited without cracks or pinholes. The electrochemical performance and microstructure confirmed that the developed thin-film SOFCs are reliable and reproducible without costly processes or materials.  相似文献   

4.
Anode functional layers (AFLs) were fabricated using slurry spin coating method on anode substrates to improve the performance of cells based on samaria-doped ceria (SDC) films. The effects of the chemical compositions of AFL and AFL thickness on the performance of solid oxide fuel cell anodes were investigated by studying their effect on the ohmic loss, electrode overpotential, and output performance of cells in different atmospheres. With humidified hydrogen used as fuel and oxygen as oxidant, the cell with an 8-μm-thick AFL (NiO:SDC = 6:4) exhibited excellent maximum power densities of 3.41, 2.89, 1.46 and 0.80 W cm−2 at 650, 600, 550 and 500 °C, respectively.  相似文献   

5.
The performance deterioration of solid oxide fuel cells (SOFCs, Nickel-Yttria stabilized zirconia (Ni-YSZ)/YSZ/lanthanum doped strontium manganite-YSZ (LSM–YSZ)) coupled with n–C4H10 steam reformers (SR), autothermal reformers (ATR), or catalytic partial oxidation reformers (CPOX) was examined using an integrated system of a micro-reactor reformer and SOFC unit. The terminal voltage rapidly degraded in CPOX-driven SOFC (oxygen to carbon ratio (OCR) = 0.5) while it was fairly stable for SR-driven SOFC (steam to carbon ratio (SCR) = 2) over 250 h. For ATR-driven SOFC at near the thermoneutral point (OCR = 0.5 and steam to carbon ration (SCR) = 1.3), significant deterioration of the terminal voltage was observed in 100 h of operation. The main precursors of carbon deposition on the SOFC were identified by reformate gas analysis during the tests. In this study, we reveal that the carbon deposition on the SOFC anode can be affected by not only lower-order hydrocarbons (C1∼C4), but also by the CO/H2 gas mixture. The change in electrical conductivity of the Ni-YSZ cermet used for the SOFC anode was investigated under different gas mixtures. To investigate the propensity for carbon deposition by each carbon-containing gas mixture, we defined the ratios of steam to specific carbon (C1∼C4 lower-order hydrocarbons and CO) in the reformate gas (SSCR, steam to specific carbon ratio). To inhibit carbon deposition on SOFC anode, the SSCR must be sufficiently high. However, the reformer operates near its maximum efficiency at low SSCR value and the higher the SSCR value, the lower the open circuit voltage and operating power density due to Nernst potential. In this study, a metal-foam supported SOFC single cell (Ni-YSZ/YSZ/Gd-doped ceria (CGO) buffer layer/lanthanum strontium cobalt ferrite-samarium doped ceria (LSCF-SDC)), impregnated with catalyst was designed; this novel SOFC was then examined for operation at a low SSCR value of the autothermal reformer conditions (near maximum efficiency of n-C4H10 reformer and thermal neutral point, SSCR = 0.5, OCR = 0.5 and SCR = 1.3). The voltage for the metal-foam supported SOFC impregnated with 0.5 wt% Rh/CGO remained at a nearly constant value, around 0.8 V, for 200 h under a constant temperature of 750 °C and current load of 250 mA cm−2.  相似文献   

6.
In the present work we describe a Solid Oxide Fuel Cell (SOFC) that comprises a Ni/GDC cermet anode, doped with a potentially commercially viable concentration of gold nano-particles. Specifically, gold was applied prior to anode sintering via the deposition–precipitation method. This procedure resulted in a SOFC that allowed carbon tolerant operation at T = 850 °C under fuel rich internal steam reforming of methane, with a stable power density of 0.41 W cm−2 at 810 mV for over 200 h.  相似文献   

7.
Yttrium-substituted SrTiO3 has been considered as anode material of solid oxide fuel cells (SOFCs) substituting of the state-of-the-art Ni cermet anodes. Sr0.895Y0.07TiO3−δ (SYT) shows good electrical conductivity, compatible thermal expansion with yttria-stabilized ZrO2 (YSZ) electrolyte and reliable stability during reduction and oxidation (redox) cycles. Single cells based on SYT anode substrates were fabricated in the dimension of 50 mm × 50 mm. The cell performances were over 1.0 A cm−2 at 0.7 V and 800 °C, which already reached the practical application level. Although Ti diffusion from SYT substrates to YSZ electrolytes was observed, it did not show apparent disadvantage to the cell performance. The cells survived 200 redox cycles without obvious OCV decrease and macroscopic damage, but performance decreased due to the electronic properties of the SYT material. The influence of water partial pressure on cell performance and coking tolerance of the cells are also discussed in this study.  相似文献   

8.
Y-doped SrTiO3 was synthesized via solid-state reaction. The effects of Y-doping on the sinterability and the electrical conductivity of YxSr1−xTiO3 were investigated. Y-doping can increase the sintering activity and the electrical conductivity of SrTiO3 when yttrium amount is less than 0.09 in YxSr1−xTiO3. Excessive yttrium will cause the generation of an insulating phase Y2Ti2O7, which impedes the densification process and decreases the electrical conductivity of YxSr1−xTiO3 material. With the increased temperature, the electrical conductivity of Y-doped SrTiO3 increases first and then decreases gradually, showing a mixed conduction behavior of semi-conductors and metals. The optimized Y0.09Sr0.91TiO3 possesses an electrical conductivity on the order of 32.5–195.8 S cm−1 in the temperature range of 25–1000 °C and being 73.7 S cm−1 at 800 °C in forming gas. The thermal cycling in air does not remarkably affect the electrical conductivity and the conduction behavior of Y0.09Sr0.91TiO3 at high temperatures. Y0.09Sr0.91TiO3 displays a relatively stable electrical conductivity at different oxygen partial pressures and excellent chemical compatibility with YSZ at temperatures lower than 1300 °C.  相似文献   

9.
The effect of cation non-stoichiometry in LaNbO4 was investigated by impregnating nano-crystalline LaNbO4 with small amounts of La3+, Nb5+ and Ca2+ oxide precursors. The sintering properties of the modified LaNbO4 powders were investigated by dilatometry, and the microstructure and phase composition were studied by electron microscopy and X-ray diffraction. The electrical properties of the materials were studied by 4-point DC-conductivity and 2-point 4-wire AC-conductivity at elevated temperatures in controlled atmosphere. Minor variations in the cation stoichiometry were shown to have a pronounced effect on both the sintering properties as well as the electrical conductivity. Addition of CaO, which introduced secondary phases above 0.25 mol% CaO, increased the sintering temperature and improved the conductivity of the materials. La2O3- and Nb2O5-excess materials did not show large variation in the electrical conductivity relative to pure LaNbO4, while the sintering properties were strongly affected by the nominal La/Nb ratio in LaNbO4. The present findings demonstrate the sensitivity of cation non-stoichiometry in materials with limited solid solubility.  相似文献   

10.
A solid oxide fuel cell (SOFC) anode with high sulfur tolerance was developed starting from a Y-doped SrTiO3 (SYTO)-yttria stabilized zirconia (YSZ) porous electrode backbone, and infiltrated with nano-sized catalytic ceria and Ru. The size of the infiltrated particles on the SYTO-YSZ pore walls was 30–200 nm, and both infiltrated materials improved the performance of the SYTO-YSZ anode significantly. The infiltrated ceria covered most of the surface of the SYTO-YSZ pore walls, while Ru was dispersed as individual nano-particles. The performance and sulfur tolerance of a cathode supported cell with ceria- and Ru-infiltrated SYTO-YSZ anode was examined in humidified H2 mixed with H2S. The anode showed high sulfur tolerance in 10–40 ppm H2S, and the cell exhibited a constant maximum power density 470 mW cm−2 at 10 ppm H2S, at 1073 K. At an applied current density 0.5 A cm−2, the addition of 10 ppm H2S to the H2 fuel dropped the cell voltage slightly, from 0.79 to 0.78 V, but completely recovered quickly after the H2S was stopped. The ceria- and Ru-infiltrated SYTO-YSZ anode showed much higher sulfur tolerance than conventional Ni-YSZ anodes.  相似文献   

11.
La0.8Sr0.2Ga0.8Mg0.2O3 (LSGM) deposit in free standing planar shape was prepared by atmospheric plasma spraying (APS) to examine the coating microstructure and electrical conductivity to aim at applying APS LSGM to solid oxide fuel cells (SOFCs). The electrical conductivity of the plasma-sprayed LSGM coating was investigated. The coating microstructure was characterized by X-ray diffraction and scanning electron microscopy. The result showed that a fraction amorphous phase was present in the as-sprayed LSGM deposit, which starts to recrystallize at the temperature of 785 °C. The electrical conductivities of the LSGM with recrystallization treatment are 0.04 and 0.09 S cm−1 at 1000 °C at the directions perpendicular and parallel to the coating surfaces, respectively. The electrical conductivity at perpendicular direction is about one-tenth that of sintered bulk at 1000 °C. This result is due to the lamellar structure feature with the limited interface bonding which dominates the electrical conductivity of APS coatings. The activation energy for ion conduction within APS-deposited LSGM deposit depends on temperature range. The change of activation energy indicates that the ion transportation dominant changes with temperature.  相似文献   

12.
MoO3 nanorods/Fe2(MoO4)3 nanoparticles composite has been prepared by a hydrothermal method combined with an in situ diffusion growth process. Single cells based on 300 μm LSGM electrolyte have been fabricated with the MoO3 nanorods/Fe2(MoO4)3 nanoparticles composite anode and a composite cathode consisting of Sr0.9Ce0.1CoO3−δ and Sm-doped ceria (SDC). The peak power densities reach 225, 50, 75 mW cm−2 at 900 °C in H2, CH4 and C3H8, respectively. The cell shows excellent long-term stability at 850 °C. The preliminary results demonstrate that the MoO3 nanorods/Fe2(MoO4)3 nanoparticles composite is a promising alternative anode for solid oxide fuel cells.  相似文献   

13.
In the current manufacturing process of novel LaNbO4-based proton conducting fuel cells a thin layer of the electrolyte is deposited by wet ceramic coating on NiO-LaNbO4 based anode and co-sintered at 1200-1300 °C. The chemical compatibility of NiO with acceptor doped LaNbO4 material is crucial to ensure viability of the cell, so potential effects of other phases resulting from off-stoichiometry in acceptor doped LaNbO4 should also be explored. Compatibility of NiO with Ca-doped LaNbO4 and its typical off-set compositions (La3NbO7 and LaNb3O9) are investigated in this work. It is shown that while NiO does not react with Ca-doped LaNbO4, fast reaction occurs with La3NbO7 or LaNb3O9. La3NbO7 and NiO form a mixed conducting perovskite phase LaNi2/3Nb1/3O3, while LaNb3O9 and NiO form either NiNb2O6 or Ni4Nb2O9 depending on the annealing temperature. This implies that manufacturing LaNbO4-based proton conducting fuel cells requires a strict control of the stoichiometry of the electrolyte.  相似文献   

14.
The highly phase-pure perovskite electrolyte, La0.9Sr0.1Ga0.8Mg0.115Co0.085O2.85 (LSGMCO), was prepared by means of glycine–nitrate process (GNP) for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The perovskite phase evolution, sintering, electrical conductivity and electrochemical performance of LSGMCO were investigated. The results show that the highly phase-pure perovskite electrolyte LSGMCO can be obtained after calcining at 1150 °C. The sample sintered at 1450 °C for 20 h in air exhibited a better sinterability, and the relative density of LSGMCO was higher than 95%. The stoichiometric indexes of the elements in the sintered sample LSGMCO determined experimentally by EDS were in good agreement with the nominal composition. The electrical conductivities of the sample were 0.094 and 0.124 S· cm−1 at 800 °C and 850 °C in air, respectively. The ionic conduction of the sample was dominant at high temperature with the higher activation energies. While at lower temperature the electron hole conduction was predominated with the lower activation energies. The maximum power densities of the single cell fabricated with LSGMCO electrolyte with Ce0.8Sm0.2O1.9 (SDC) interlayer, SmBaCo2O5+x cathode and NiO/SDC anode achieved 643 and 802 mW cm−2 at 800 °C and 850 °C, respectively.  相似文献   

15.
16.
Electrolyte supported SOFCs with Ni-YSZ/Ni-GDC bi-layer anodes were operated at 800 °C and 900 °C with 8% H2O and 10-20 ppm of PH3/syngas to reduce steam-related interference accelerate degradation. Cell power output degraded rapidly within the first 12 h, with even faster degradation at 900 °C. Nickel phosphide phases detected in the anode include Ni3P, Ni12P5 and Ni5P2, while CePO4 formed in the catalyst layer. Irrespective of the electrolyte component used, phosphorus penetrated to the anode-electrolyte interface in electrically loaded cells, as well as with Ni-GDC cells in coupon tests. In contaminated bi-layer anodes, phosphorus appeared to concentrate away from the surface, suggesting oxidation of PH3 when steam rich environments were present.  相似文献   

17.
We discuss here our attempt to develop (Mn,Co)3O4 spinel coatings on the surface of Cr-containing steel through electrophoretic deposition (EPD) followed by reduced-atmosphere sintering for solid oxide fuel cell (SOFC) interconnect application. The effects of EPD voltages and sintering atmospheres on the microstructure, electrical conductivity and long-term stability of the coated interconnects are examined by means of scanning electron microscopy (SEM), energy dispersion spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), and four-probe resistance techniques. For the spinel coatings generated using smaller voltage than 400 V, the interconnect surfaces exhibit good packing behavior and high conductivity. The reduced atmosphere during sintering has a beneficial impact on the minimizing chromia subscale formation and thus reducing the area specific resistance (ASR) of the coated interconnects. Moreover, it is interesting to note that a more stable long-term performance is achieved for the spinel coating sintered in H2/H2O atmosphere with thin chromia sub-scale and no Cr penetration. Based on the current results, EPD followed by reduced-atmosphere sintering is a fast and economic way to deposit (Mn,Co)3O4 coating for SOFC interconnect applications.  相似文献   

18.
Perovskite-structure La0.75Sr0.25Cr0.5Mn0.5O3−δ (LSCM) powders were prepared using a simple combustion process. Thermal analysis was carried out on the perovskite precursor to investigate the oxide-phase formation. The structural phase of the powders was determined by X-ray diffraction. These results showed that the decomposition of the precursors occurs in a two-step reaction and temperatures higher than 1100 °C are required for these decomposition reactions. For the electrochemical characterization, LSCM anode materials and (Pr0.7Ca0.3)0.9MnO3 (PCM) cathode materials were screen-printed on two sides of dense La0.8Sr0.2Ga0.8Mg0.2O3 (LSGM) electrolyte layers prepared by tape casting with a thickness of about 600 μm, respectively. The morphology of the screen-printed La0.75Sr0.25Cr0.5Mn0.5O3−δ perovskite thick films (65 μm) was investigated by field emission scanning electron microscope and showed a porous microstructure. In addition, fuel cell tests were carried out using humidified hydrogen or ethanol stream as fuel and oxygen as oxidant. The performance of the conventional electrolyte-supported cell LSCM/LSGM/PCM while operating on humidified hydrogen was modest with a maximum power density of 165, 99 and 62 mW cm−2 at 850, 800 and 750 °C, respectively, the corresponding values for the cell while operating on ethanol stream was 160, 101 and 58 mW cm−2, respectively. Cell stability tests indicate no significant degradation in performance has been observed after 60 h of cell testing when LSCM anode was exposed to ethanol steam at 750 °C, suggesting that carbon deposition was limited during cell operation.  相似文献   

19.
Solid oxide fuel cell (SOFC) running directly on hydrocarbon fuels has attracted much attention in recent years. In this paper, a dual-layer structure anode running on ethanol is fabricated by tape casting and screen-printing method, the addition of a LSCM-CeO2 catalyst layer to the supported anode surface yields better performance in ethanol fuel. The effect that the synthesis conditions of the catalyst layer have on the performances of the composite anodes is investigated. Single cells with this anode are also fabricated, of which the maximum power density reaches 669 mW cm−2 at 850 °C running on ethanol steam. No significant degradation in performance has been observed after 216 h of cell testing when the Ni-ScSZ13 anode is exposed to ethanol steam at 700 °C. Very little carbon is detected on the anode, suggesting that carbon deposition is limited during cell operation. Consequently, the LSCM-CeO2 catalyst layer on the surface of the supported anode makes it possible to have good stability for long-term operation in ethanol fuel due to low carbon deposition.  相似文献   

20.
The optimization of electrodes for solid oxide fuel cells (SOFCs) has been achieved via a wet impregnation method. Pure La0.75Sr0.25Cr0.5Mn0.5O3−δ (LSCrM) anodes are modified using Ni(NO3)2 and/or Ce(NO3)3/(Sm,Ce)(NO3)x solution. Several yttria-stabilized zirconia (YSZ) electrolyte-supported fuel cells are tested to clarify the contribution of Ni and/or CeO2 to the cell performance. For the cell using pure-LSCrM anodes, the maximum power density (Pmax) at 850 °C is 198 mW cm−2 when dry H2 and air are used as the fuel and oxidant, respectively. When H2 is changed to CH4, the value of Pmax is 32 mW cm−2. After 8.9 wt.% Ni and 5.8 wt.% CeO2 are introduced into the LSCrM anode, the cell exhibits increased values of Pmax 432, 681, 948 and 1135 mW cm−2 at 700, 750, 800 and 850 °C, respectively, with dry H2 as fuel and air as oxidant. When O2 at 50 mL min−1 is used as the oxidant, the value of Pmax increases to 1450 mW cm−2 at 850 °C. When dry CH4 is used as fuel and air as oxidant, the values of Pmax reach 95, 197, 421 and 645 mW cm−2 at 750, 800, 850 and 900 °C, respectively. The introduction of Ni greatly improves the performance of the LSCrM anode but does not cause any carbon deposit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号