首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 0 毫秒
1.
Palladium composite membrane with excellent stability was successfully prepared using the electroless plating (ELP) route on a porous stainless steel (PSS) support for hydrogen separation. In order to modify the average pore size of PSS support and to prevent inter-metallic diffusion, the NaY zeolite layer was coated on the PSS support with the seeding and secondary growth method. A high-temperature membrane module was designed by Solid work software and fabricated from 316 L stainless steel with a knife-edge seal. The microstructures and morphologies of the samples were analyzed using XRD, BET, AFM, FESEM and EDX techniques. Permeation experiments were carried out with binary mixtures of H2/N2 with various ratios (90/10, 75/25 and 50/50) and pure H2 and N2 at different temperatures (350, 400 and 450 °C) and feed pressures (200–400 kPa). Hydrogen permeation tests showed that the membrane with a thickness of about 7 μm had a hydrogen permeance of 6.2 × 10−4 mol m−2 s−1 Pa−0.5 with an ideal H2/N2 selectivity of 736, at 450 °C. In addition, the results of stability tests revealed that the membrane could remain stable during a long-term operation by varying temperature and feed gases.  相似文献   

2.
A thin palladium composite membrane without any modified layer was successfully obtained on a rough porous alumina substrate. Prior to the fabrication of palladium membrane, a poly(vinyl) alcohol (PVA) layer was first coated onto the porous substrate by dip-coating technique to improve its surface roughness and pore size. After deposition of palladium membrane on the PVA modified substrate, the polymer layer can be completely removed from the composite membrane by heat treatment. The microstructure of the palladium composite membrane was characterized in detail using SEM, EDXS and XRD analysis. Permeation measurements were carried out using H2 and N2 at temperatures of 623 K, 673 K, 723 K and 773 K. The results indicated that the hydrogen permeation flux of 0.238 mol m?2 s?1 with H2 separation factor α(H2/N2) of 956 for the as-prepared palladium membrane was obtained at 773 K and 100 kPa. Furthermore, the good membrane stability was proven during the total operation time of 160 h at the temperature range of 623 K–773 K and gas exchange cycles of 30 between hydrogen and nitrogen at 723 K.  相似文献   

3.
The H2-permeable palladium membranes based on porous stainless steel (PSS) substrate are important for development of various hydrogen energy systems. To improve the surface of the PSS, a microporous silver layer was deposited successively by a coating with a suspension of silver powder in polyvinyl alcohol (PVA) solution, a heating under nitrogen at 500 °C for carbonization of PVA, an air treatment and a hydrogen reduction. The formation of carbon from PVA helps to maintain the porosity and integrity of the silver layer. After an activation of the resulting Ag/PSS surface through galvanic-cell reaction, palladium membranes with a thickness around 4 μm were successfully prepared by a suction-assisted electroless plating. SEM, EDS, metallography and porometry analyzes were conducted for material characterizations. The prepared Pd/Ag/PSS membrane is permeable and selective as compared with similar those reported in literature. The permeation tests were carried out at 350, 400, 450 and 500 °C for 48, 48, 48 and 60 h, respectively, and the membrane was found to be unstable at 500 °C due to the presence of pinholes. No significant intermetallic diffusion between the silver and palladium layers was observed.  相似文献   

4.
Composite palladium membranes based on porous stainless steel (PSS) substrate are idea hydrogen separators and purifiers for hydrogen energy systems, and the surface modification of the PSS is of key importance. In this work, the macroporous PSS tubes were aluminized through pack cementation at 850 °C in argon, followed by an oxidation with air at 600 °C. Palladium membranes were prepared by electroless plating. Their permeation performances were tested, and the hydrogen permeation kinetics was discussed. The substrate materials and the palladium membranes were characterized by means of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD). An Al2O3-enriched surface layer with small pore size was created through aluminizing and oxidation treatments, which greatly improves the membrane integrity. The intermetallic diffusion between the palladium membranes and the PSS substrate material was not observed after a heat-treatment at 500 °C under hydrogen for 200 h. However, the aluminizing and oxidation treatments still need to be further optimized in order to improve the membrane permeability and selectivity, and particularly, the high diffusion resistance of the substrate materials greatly limited the hydrogen flux.  相似文献   

5.
Composite palladium membranes can be used as a hydrogen separator because of their excellent permeability and permselectivity. The total membrane area in a hydrogen separator must be reasonably large for industrial use, and it is important that each membrane provides a large enough area. Such a demand can be well met by introducing multichannel composite membranes. In this work, a commercially available microporous ceramic filter with 19 channels was used as a membrane substrate, and the diameter of each channel was 4 mm. A uniform thin palladium layer was fabricated inside the narrow channels by using an electroless plating method, and the resulting membranes were highly permeable and selective. This membrane concept provides a high surface-to-volume ratio without causing significant pressure loss, making the hydrogen separator compact and capable. However, special attention should be paid to cleaning the membrane after electroless plating.  相似文献   

6.
Thin Pd membranes for hydrogen filtration were deposited on modified porous stainless steel (PSS) tubes using an electroless plating technique. Alumina oxide (Al2O3) particles of two different sizes were subsequently used to modify the non-uniform pore distribution and the surface roughness of the PSS tubes. The principle of the modification was to use large Al2O3 particles (∼10 μm) to fill larger pores on the surface, and leave the smaller pores intact. Small Al2O3 particles (∼1 μm) were then used to further decrease the surface roughness. The detailed manufacturing steps of the Al2O3 modification were investigated and optimized to achieve a continuous dense Pd membrane with a minimum thickness of 4.4 μm on the modified PSS tubes. The highest hydrogen permeance of the membrane was 2.94 × 10−3 mol/m2-s-kPa0.5 at 773 K, with a selectivity coefficient (H2/He) of 1124 under a pressure difference of 800 kPa. In comparison, the thickness and hydrogen permeance of a dense Pd membrane on unmodified PSS tubes were 31.5 μm and 5.97 × 10−4 mol/m2-s-kPa0.5, respectively, at 773 K under an 800 kPa pressure difference. The stability of the membranes at high temperatures was also investigated. The hydrogen permeation flux at 773 K was stable during a test period of 500 h. These results demonstrate that the two-step method modifies the surface of PSS tubes in a relatively simple way and results in thin, dense Pd membranes with high hydrogen permeance and good thermal stability.  相似文献   

7.
A palladium selective tubular membrane has been prepared to separate and purify hydrogen. The membrane consists of a composite material, formed by different layers: a stainless steel support (thickness of 1.9 mm), an yttria-stabilized zirconia interphase (thickness of 50 μm) prepared by Atmospheric Plasma Spraying and a palladium layer (thickness of 27.7 μm) prepared by Electroless Plating. The permeation properties of the membrane have been tested at different operating conditions: retentate pressure (1-5 bar), temperature (350-450 °C) and hydrogen molar fraction of feed gas (0.7-1). At 400 °C, a permeability of 1.1 × 10−8 mol/(s m Pa0.5) and a complete selectivity to hydrogen were obtained. The complete retention of nitrogen was maintained for all tested experiment conditions, with both single and mixtures of gases, ensuring 100% purity in the hydrogen permeate flux.A rigorous model considering all the resistances involved in the hydrogen transport has been applied for evaluating the relative importance of the different resistances, concluding that the transport through the palladium layer is the controlling one. In the same way, a model considering the axial variations of hydrogen concentration because of the cylindrical geometry of the experimental device has been applied to the fitting of the experimental data. The best fitting results have been obtained considering Sieverts’-law dependences of the permeation on the hydrogen partial pressure.  相似文献   

8.
In this experimental work, the ethanol steam reforming reaction is performed in a porous stainless steel supported palladium membrane reactor with the aim of investigating the influence of the membrane characteristics as well as of the reaction pressure. The membrane is prepared by electroless plating technique with the palladium layer around 25 μm deposited onto a stainless steel tubular macroporous support. The experimental campaign is directed both towards permeation and reaction tests. Firstly, pure He and H2 are supplied separately between 350 and 400 °C in the MR in permeator modality for calculating the ideal selectivity αH2/He. Thus, the MR is packed with 3 g of a commercial Co/Al2O3 catalyst and reaction tests are performed at 400 °C, by varying the reaction pressure from 3.0 to 8.0 bar. Experimental results in terms of ethanol conversions as well as recovery and purity of hydrogen are given and compared with some results in the same research field from the open literature.As best result of this work, 100% ethanol conversion is reached at 400 °C and 8 bar, recovering a hydrogen-rich stream consisting of more than 50% over the total hydrogen produced from reaction, having a purity around 65%.  相似文献   

9.
A layered double hydroxide (LDH) layer was grown directly on a porous stainless steel (PSS) surface to reduce the pore opening of the PSS and to be a middle layer retarding Pd/Fe interdiffusion. A thin Pd film (∼7.85 μm) was plated on the modified PSS tube by an electroless plating method. A helium leak test proved that the thin Pd on the LDH-modified PSS substrate was free of defects. The membrane had a H2 flux of 28–36 m3/(m2 h) and H2/He selectivity larger than 2000 at a pressure difference of 1 bar. Thermal cycling between room temperature and 673 K was performed and showed that the membrane exhibited good permeance and selectivity. Long-term evaluation (1500 h) of the membrane at 673 K showed static results of H2 flux (∼30 m3/(m2 h)) and H2/He selectivity (∼2000) over the 1500 h test period.  相似文献   

10.
Increasing hydrogen energy utilization has greatly stimulated the development of the hydrogen-permeable palladium membrane, which is comprised of a thin layer of palladium or palladium alloy on a porous substrate. This work chose the low-cost macroporous Al2O3 as the substrate material, and the surface modification was carried out with a conventional 2B pencil, the lead of which is composed of graphite and clay. Based on the modified substrate, a highly permeable and selective Pd/pencil/Al2O3 composite membrane was successfully fabricated via electroless plating. The membrane was characterized by SEM (scanning electron microscopy), field-emission SEM and metallographic microscopy. The hydrogen flux and H2/N2 selectivity of the membrane (with a palladium thickness of 5 μm) under 1 bar at 723 K were 25 m3/(m2 h) and 3700, respectively; the membrane was found to be stable during a time-on-stream of 330 h at 723 K.  相似文献   

11.
We prepared a disc-shaped porous stainless steel (PSS) support for hydrogen separation Pd membrane via metal injection molding (MIM) method to facilitate the mass production of porous substrates. MIMed PSS supports obtained in a batch showed relatively higher apparent porosity (from 32.75% to 39.28%) than that reported for commercially available PSS substrate. In addition, the surface morphologies of the MIMed PSS, surface roughness of 1.119 μm and pore depth of 8.6 μm, indicate its suitability as a membrane support than the commercially available one. Pd membrane prepared over MIMed PSS, which was modified by a simple axial pressing method to control the surface morphologies, had a thinner Pd layer, 2.94 μm, and showed an extremely higher ideal H2/N2 selectivity with a hydrogen permeation flux of 21.3 ml/min/cm2 at del-P = 1 bar and 400 °C, compared with Pd membrane over MIMed PSS modified with conventional surface modification.  相似文献   

12.
In this paper, an additive manufacturing prepared porous stainless steel felt (AM-PSSF) is proposed as a novel catalyst support for hydrogen production via methanol steam reforming (MSR). In the method, 316 L stainless steel powder with diameter of 15–63 μm is processed by the additive manufacturing technology of selective laser melting (SLM). To accomplish the preparation, the reforming chamber where the AM-PSSF is embedded is firstly divided into an all-hexahedron mesh. Then, the triply periodic minimal surface (TPMS) unit with mathematical form, high interconnectivity and large specific surface area is mapped into the hexahedrons based on shape function, forming the fully connected three-dimensional (3D) micro pore structure of the AM-PSSF. By correlating the mathematical parameter and the porosity of the TPMS unit, and taking into account the SLM process, the porosity of the AM-PSSF is well controlled. Based on the designed 3D pore structure model, the AM-PSSF is produced using standard SLM process. The application of the AM-PSSF as catalyst support for hydrogen production through MSR indicates that: 1) both the naked and catalyst-coated AM-PSSF have the characteristics of high porosity, large specific surface area and high connectivity; 2) the MSR hydrogen production performance of the AM-PSSF is better than that of the commercial stainless steel fiber sintered felt. The feasibility of AM-PSSF as catalyst support for MSR hydrogen production may pave a better way to balance different requirements for catalyst support, thanks to the excellent controllability provided by AM on both the external shape and the internal pore structure, and to the produced rough surface morphology that benefits the catalyst adhesion strength. In addition, catalyst support with pore structures that are more accommodated with the flow field and the reaction rate of MSR reaction may be prepared in future, since the entire catalyst support structure, from macro scale to micro scale, is under control.  相似文献   

13.
Hydrogen embrittlement (HE) together with the hydrogen transport behavior in hydrogen-charged type 304 stainless steel was investigated by combined tension and outgassing experiments. The hydrogen release rate and HE of hydrogen-charged 304 specimens increase with the hydrogen pressure for hydrogen-charging (or hydrogen content) and almost no HE is observed below the hydrogen content of 8.5 mass ppm. Baking at 433 K for 48 h can eliminate HE of the hydrogen-charged 304 specimen, while removing the surface layer will restore HE, which indicates that hydrogen in the surface layer plays the primary role in HE. Scanning electron microscopy (SEM) and scanning tunnel microscopy (STM) observations show that particles attributed to the strain-induced α′ martensite formation break away from the matrix and the small holes form during deformation on the specimen surface. With increasing strain, the connection among small holes along {111} slip planes of austenite will cause crack initiation on the surface, and then the hydrogen induced crack propagates from the surface to interior.  相似文献   

14.
The feasibility of using sintered stainless steel fiber felt (SSSFF) as gas diffusion layer (GDL) in proton exchange membrane fuel cells (PEMFCs) is evaluated in this study. The SSSFF is coated with an amorphous carbon (a-C) film by closed field unbalanced magnetron sputter ion plating (CFUBMSIP) to enhance the corrosion resistance and reduce the contact resistance. The characteristics of treated SSSFF, including microscopic morphology, mechanical properties, electrical conductivity, electrochemical behavior and wettablity characterization, are systematically investigated and summarized according to the requirements of GDL in PEMFC. A membrane electrode assembly (MEA) with a-C coated SSSFF-15 GDL is fabricated and assembled with a-C coated stainless steel bipolar plates in a single cell. The initial peak power density of the single cell is 877.8 mW cm−2 at a current density of 2324.9 mA cm−2. Lifetime test of the single cell over 200 h indicates that the a-C coating protects the SSSFF-15 GDL from corrosion and decreases the performance degradation from 30.6% to 6.3%. The results show that the SSSFF GDL, enjoying higher compressive modulus and ductility, is a promising solution to improve fluid permeability of GDL under compression and PEMFC durability.  相似文献   

15.
In a proton exchange membrane (PEM) methanol electrolyzer, the even supply of reactant to and the smooth removal of carbon dioxide from the anode are very important in order to achieve a high hydrogen production performance. An appropriate design of flow field and gas diffusion layer (GDL) is a key factor in satisfying the above requirements. Previous research has shown that hydrogen production performance of the PEM methanol electrolyzer cell was largely improved with a porous flow field made of sintered spherical metal powder compared with a conventional groove type flow field. Based on this improvement, the current study investigated the influence of polytetrafluoroethylene (PTFE) treatment of the anode GDL on hydrogen production performance of the PEM methanol electrolyzer with porous metal flow fields. Influences of operating conditions such as methanol concentration and cell temperature with the flow field were also investigated.  相似文献   

16.
The tensile properties and crack propagation rate in a type 316 austenitic stainless steel prepared by vacuum induction melting method with different residual hydrogen contents (1.1–11.5 × 10−6) were systematically investigated in this research work. The room temperature tensile properties were measured under both regular tensile (12 mm/min) and slow tensile (0.01 mm/min) conditions, and the fracture properties of the tensile fractures with both rates were analyzed. It shows that the hydrogen induced plasticity loss of stainless steel strongly depends on the tensile rate. Under regular tensile condition, there is no plastic loss even when the hydrogen content is up to 11.5 × 10−6 while in the slow tensile condition, the plastic loss can be clearly identified rising with the increasing H contents. The fatigue crack propagation rate was tested at room temperature, and the crack growth rate formula (Paris) of the 316 stainless steels with varied H contents were obtained. The fatigue crack propagation rate test shows that the crack growth rate of the 316 stainless steel with 8.0–11.5 × 10−6 hydrogen is significantly higher than that of benchmark steel.  相似文献   

17.
Previous research has shown that hydrogen production performance of a PEM methanol electrolyzer was largely improved with a porous flow field made of sintered spherical metal powder compared with a conventional groove type flow field. In this study, we experimentally investigated the effect of the change in grain diameter and material of the porous metal flow field on hydrogen production performance in a PEM methanol electrolyzer cell. The experimental results indicated that the hydrogen production performance of the electrolyzer cell was improved by reducing the grain diameter. This could be mainly attributed to the lower interfacial contact resistance by reducing the grain diameter of the porous metal flow field. For investigating the influence of material, cell performances with a stainless steel and a nickel base alloy were compared.  相似文献   

18.
The development of hydrogen energy systems has placed a high demand on hydrogen-permeable membranes as compact hydrogen separators and purifiers. Although Pd/Ceramic composite membranes are particularly effective in this role, the high cost of these membranes has greatly limited their applications; this high cost stems largely from the use of expensive substrate material. This problem may be solved by substrate recycling and the use of lower cost substrates. As a case study, we employed expensive asymmetric microporous Al2O3 and low-cost macroporous symmetric Al2O3 as membrane substrates (average pore sizes are 0.2 and 3.3 μm, respectively). The palladium membranes were fabricated by electroless plating, and substrate recycling was carried out by palladium dissolution with a hot HNO3 solution. The functional surface layer of the microporous Al2O3 was damaged during substrate recycling, and the reuse of the substrate led to poor membrane selectivity. With the assistance of pencil coating as a facile and environmentally benign surface treatment, the macroporous Al2O3 can be successfully utilized. Furthermore, the macroporous Al2O3 can be also recycled and reused as membrane substrate, yielding highly permeable, selective and stable palladium membranes. Consequently, the substrate cost can be further decreased, and the applications of this kind of membranes would expand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号