首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ni/SiO2 and Ni–Al2O3/SiO2 catalysts were prepared by incipient wetness impregnation using citrate and nitrate precursors and tested with a reaction of combination of CO2 reforming and partial oxidation of methane to produce syngas (H2/CO). The catalytic activity of Ni/SiO2 and Ni–Al2O3/SiO2 greatly depended on interaction between NiO and support. NiO strongly interacted with support formed small nickel particles (about 4 nm for NiSC which is abbreviation of Ni/SiO2 prepared with Nickel citrate precursor) after reduction. The small nickel particles over NiSC catalysts exhibited a good catalytic performance.  相似文献   

2.
The SiO2 and Ni–SiO2 were synthesized via the complex-decomposition method by using different organic acids as the complexing agent and fuel. The Ni-supported SiO2 from different sources was prepared by the incipient impregnation method. The Ni–SiO2 and Ni/SiO2 were comparatively evaluated for carbon dioxide reforming of methane (CDR) under severe conditions of CH4/CO2 = 1.0, T = 750 °C, GHSV = 53200 mL g−1 h−1, and P = 0.1–1.0 MPa. The materials were fully characterized by XRD, XPS, TEM, TG-DSC, H2-TPR, and N2 adsorption-desorption at −196 °C. It was found that the complexing agent and preparation method of the catalyst significantly affected its surface area, the size and dispersion of Ni, the reduction behavior, and the coking and sintering properties, which determine the activity and stability of the catalyst for CDR. As a result, a highly active and stable Ni–SiO2 for pressurized CDR was obtained by optimizing the complexing agent.  相似文献   

3.
Thermal behaviors and stability of glass/glass–ceramic-based sealant materials are critical issues for high temperature solid oxide fuel/electrolyzer cells. To understand the thermophysical properties and devitrification behavior of SrO–La2O3–Al2O3–B2O3–SiO2 system, glasses were synthesized by quenching (25 − X)SrO–20La2O3–(7 + X)Al2O3–40B2O3–8SiO2 oxides, where X was varied from 0.0 mol% to 10.0 mol% at 2.5 mol% interval. Thermal properties were characterized by dilatometry and differential scanning calorimetry (DSC). Microstructural studies were performed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). All the compositions have a glass transition temperature greater than 620 °C and a crystallization temperature greater than 826 °C. Also, all the glasses have a coefficient of thermal expansion (CTE) between 9.0 × 10−6 K−1 and 14.5 × 106 K−1 after the first thermal cycle. La2O3 and B2O3 contribute to glass devitrification by forming crystalline LaBO3. Al2O3 stabilizes the glasses by suppressing devitrification. Significant improvement in devitrification resistance is observed as X increases from 0.0 mol% to 10.0 mol%.  相似文献   

4.
Oxidative steam reforming of ethanol at low oxygen to ethanol ratios was investigated over nickel catalysts on Al2O3 supports that were either unpromoted or promoted with CeO2, ZrO2 and CeO2–ZrO2. The promoted catalysts showed greater activity and a higher hydrogen yield than the unpromoted catalyst. The characterization of the Ni-based catalysts promoted with CeO2 and/or ZrO2 showed that the variations induced in the Al2O3 by the addition of CeO2 and/or ZrO2 alter the catalyst's properties by enhancing Ni dispersion and reducing Ni particle size. The promoters, especially CeO2–ZrO2, improved catalytic activity by increasing the H2 yield and the CO2/CO and the H2/CO values while decreasing coke formation. This results from the addition of ZrO2 into CeO2. This promoter highlights the advantages of oxygen storage capacity and of mobile oxygen vacancies that increase the number of surface oxygen species. The addition of oxygen facilitates the reaction by regenerating the surface oxygenation of the promoters and by oxidizing surface carbon species and carbon-containing products.  相似文献   

5.
Pristine Ni/γ–Al2O3 and CeO2–Ni/γ–Al2O3 catalysts were prepared by co-impregnation technique for dry reforming of propane. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) were used to examine the structure and morphology of the catalysts before and after the reforming reactions. The excellent interaction between catalyst active phases was observed in both CeO2–Ni/γ–Al2O3 and Ni/γ–Al2O3 stabilized with polyethelene glycol (Ni/γ–Al2O3–PEG). Towards C3H8 and CO2 conversion, the CeO2–Ni/γ–Al2O3 and Ni/γ–Al2O3–PEG showed improved catalytic activity when compared to the pristine Ni/γ–Al2O3 catalyst. Interestingly, high H2 concentration was achieved with the CeO2–Ni/γ–Al2O3 and high CO concentration with the Ni/γ–Al2O3–PEG, which is due to the nanoconfinement of nickel particles within the support and favorable metal-support interaction as a result of plasma reduction. The CeO2–Ni/γ–Al2O3 catalyst exhibited better stability for anti-sintering and coke resistance, thus exhibiting high reactivity and durability in the dry reforming.  相似文献   

6.
Ni (2.5 wt%) and Co (2.5 wt%) supported over ZrO2/Al2O3 were prepared by following a hydrolytic co-precipitation method. The synthesized catalysts were further promoted by Rh incorporation (0.01–1.00 wt%) and tested for their catalytic performance for dry CO2 reforming, combined steam–CO2 reforming and oxy–CO2 reforming of methane for production of syngas. The catalysts were characterized by using N2 physical adsorption, XRD, H2–TPR, SEM, CO2–TPD, NH3–TPD, TEM and TGA. The results revealed that ZrO2 phase was in crystalline form in the catalysts along with amorphous Al oxides. Ni and Co were confirmed to be in their respective spinel phases that were reducible to metallic form at 800 °C under H2. Ni and Co were well dispersed with their nano-crystalline nature. The catalyst with 0.2% loading of Rh showed superior performance in the studied reactions for reforming of methane. This catalyst also showed good coke resistance ability for dry CO2 reforming reaction with 3.8 wt% of carbon formation during the reaction as compared to 11.6 wt% carbon formation over the catalyst without Rh. The catalyst performance was stable throughout the reaction time for CH4 conversions, irrespective of carbon formation with slight decline (~1%) in CO2 conversion. For dry CO2 reforming reaction, this catalyst showed good conversion for both CH4 and CO2 (67.6% and 71.8% respectively) with a H2/CO ratio of 0.84, while for the Oxy-CO2 reforming reaction, the activity was superior with CH4 and CO2 conversions (73.7% and 83.8% respectively) and H2/CO ratio of 1.05.  相似文献   

7.
To improve hydrogen production performance, this paper describes a novel approach for fabricating a biofilm photobioreactor by adsorption of the photosynthetic bacteria (PSB) Rhodopseudomonas palustris CQK 01 on a hollow optical fiber (HOF) with a GeO2–SiO2–chitosan medium (GSCM) coating. The composition of the coating is analyzed using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The biocompatibility of the GSCM-coated HOF and the PSB in the hungry condition are examined. We also quantitatively investigate the biofilm dry weight; protein, polysaccharide, bacteriochlorophyll, carotenoid, and ATP contents of the biofilm cell; and average H2 production rates. The GSCM-coated HOF exhibits enhanced the biofilm biomass, improved the biofilm activity, and an increased H2 production rate. The proposed photobioreactor yielded fairly stable long-term performance with a hydrogen production rate of 2.65 mmol/L/h, which is 1.56 and 1.51 times higher than those of photobioreactors with an uncoated HOF and with a fiber having a roughened surface obtained by wrapping it in wire mesh, respectively.  相似文献   

8.
Carbon dioxide reforming of methane to synthesis gas was studied over Ni/ZrO2–SiO2 catalyst under different pretreatment atmospheres. Characterization using powder X-ray diffraction, H2 temperature-programmed reduction, H2 temperature-programmed hydrogenation, TG/DTA, XPS, Raman spectra and transmission electron microscopy techniques revealed that gas atmospheres employed in the catalyst pretreatment have a significant influence on the catalytic performance. The helium-pretreated catalyst was found to be the most suitable catalyst for this application, showing the improved catalytic performance. More specifically, helium pretreatment facilitated the generation of well-distributed active metal sites while the heterogeneity of Ni components upon H2 pretreatment degraded catalytic activity of metal sites considerably. Pretreatment under CO atmosphere resulted in the formation of carbon encapsulated metal species thus causing catalyst deactivation severely. Inefficient reduction under CH4 activation and the presence of a great amount of carbonaceous species, disfavor the production of synthesis gas during the dry reforming.  相似文献   

9.
Laminar burning velocities of CO–H2–CO2–O2 flames were measured by using the outwardly spherical propagating flame method. The effect of large fraction of hydrogen and CO2 on flame radiation, chemical reaction, and intrinsic flame instability were investigated. Results show that the laminar burning velocities of CO–H2–CO2–O2 mixtures increase with the increase of hydrogen fraction and decrease with the increase of CO2 fraction. The effect of hydrogen fraction on laminar burning velocity is weakened with the increase of CO2 fraction. The Davis et al. syngas mechanism can be used to calculate the syngas oxyfuel combustion at low hydrogen and CO2 fraction but needs to be revised and validated by additional experimental data for the high hydrogen and CO2 fraction. The radiation of syngas oxyfuel flame is much stronger than that of syngas–air and hydrocarbons–air flame due to the existence of large amount of CO2 in the flame. The CO2 acts as an inhibitor in the reaction process of syngas oxyfuel combustion due to the competition of the reactions of H + O2 = O + OH, CO + OH = CO2 + H and H + O2(+M) = HO2(+M) on H radical. Flame cellular structure is promoted with the increase of hydrogen fraction and is suppressed with the increase of CO2 fraction due to the combination effect of hydrodynamic and thermal-diffusive instability.  相似文献   

10.
Ni–Ce0.8Zr0.2O2 and Ni–MgO–Ce0.8Zr0.2O2 catalysts were investigated for H2 production from CO2 reforming of CH4 reaction at a very high gas hourly space velocity of 480,000 h−1. Ni–MgO–Ce0.8Zr0.2O2 exhibited higher catalytic activity and stability (CH4 conversion >95% at 800 °C for 200 h). The outstanding catalytic performance is mainly due to the basic nature of MgO and an intimate interaction between Ni and MgO.  相似文献   

11.
On the basis of extreme similarity between the triangle phase diagrams of LiNiO2–LiTiO2–Li[Li1/3Ti2/3]O2 and LiNiO2–LiMnO2–Li[Li1/3Mn2/3]O2, new Li–Ni–Ti–O series with a nominal composition of Li1+z/3Ni1/2−z/2Ti1/2+z/6O2 (0 ≤ z ≤ 0.5) was designed and attempted to prepare via a spray-drying method. XRD identified that new Li–Ni–Ti–O compounds had cubic rocksalt structure, in which Li, Ni and Ti were evenly distributed on the octahedral sites in cubic closely packed lattice of oxygen ions. They can be considered as the solid solution between cubic LiNi1/2Ti1/2O2 and Li[Li1/3Ti2/3]O2 (high temperature form). Charge–discharge tests showed that Li–Ni–Ti–O compounds with appropriate compositions could display a considerable capacity (more than 80 mAh g−1 for 0.2 ≤ z ≤ 0.27) at room temperature in the voltage range of 4.5–2.5 V and good electrochemical properties within respect to capacity (more than 150 mAh g−1 for 0 ≤ z ≤ 0.27), cycleability and rate capability at an elevated temperature of 50 °C. These suggest that the disordered cubic structure in some cases may function as a good host structure for intercalation/deintercalation of Li+. A preliminary electrochemical comparison between Li1+z/3Ni1/2−z/2Ti1/2+z/6O2 (0 ≤ z ≤ 0.5) and Li6/5Ni2/5Ti2/5O2 indicated that charge–discharge mechanism based on Ni redox at the voltage of >3.0 V behaved somewhat differently, that is, Ni could be reduced to +2 in Li1+z/3Ni1/2−z/2Ti1/2+z/6O2 while +3 in Li6/5Ni2/5Ti2/5O2. Reduction of Ti4+ at a plateau of around 2.3 V could be clearly detected in Li1+z/3Ni1/2−z/2Ti1/2+z/6O2 with 0.27 ≤ z ≤ 0.5 at 50 °C after a deep charge associated with charge compensation from oxygen ion during initial cycle.  相似文献   

12.
Monometallic copper and nickel catalysts supported on cerium-manganese mixed oxides are prepared, characterized and evaluated for the Water–Gas Shift (WGS) reaction. Active metal loading of 2.5 wt% and 7.5 wt% are used to impregnate MnOx–CeO2 supports with 30% and 50% Mn:Ce molar ratio. The structure of the samples strongly depends on both the active metal employed and the manganese content in the mixed support. For both Cu and Ni samples, the best catalytic behavior is found in samples supported on the MnOx–CeO2 oxides with 30% Mn:Ce molar ratio, as a result of the presence of CuxMnyO4 spinel-type phases in the case of copper catalysts and the presence of a NiMnO3 mixed oxide with defect ilmenite structure in the case of nickel catalysts.  相似文献   

13.
Production of syngas via autothermal reforming of methane (MATR) in a fluidized bed reactor was investigated over a series of combined CeO2–ZrO2/SiO2 supported Ni catalysts. These combined CeO2–ZrO2/SiO2 supports and supported Ni catalysts were characterized by nitrogen adsorption, XRD, NH3-TPD, CO2-TPD and H2-TPR. It was found that the combined supports integrated the advantages of SiO2 and CeO2, ZrO2. That is, they have bigger surface area (about 300 m2/g) than pure CeO2 and ZrO2, stronger acidity and alkalescence than that of pure SiO2, and enhanced the mobility of H adatoms. Ni species dispersed highly on these combined CeO2–ZrO2/SiO2 supports, and became more reducible. Ni catalysts on the combined supports possess higher CO2 adsorption ability, higher methane activation ability and exhibited higher activity for MATR. H2/CO ratio in product gas could be controlled successfully in the range of 0.99–2.21 by manipulating the relative concentrations of CO2 and O2 in feed.  相似文献   

14.
Al2O3–2SiO2 amorphous powders are synthesized by sol–gel method with tetraethoxysilane (TEOS) and aluminum nitrate (ANN) as the starting materials. The microstructure and phase structure of the powders are investigated by SEM and XRD analysis. Geopolymer materials samples are prepared by mechanically mixing stoichiometric amounts of calcined Al2O3–2SiO2 powders and sodium silicate solutions to allow a mass ratio of Na2O/Al2O3 = 0.4, 0.375, 0.35, 0.325, 0.288, 0.26, 0.23 or 0.2 separately, and finally to form a homogenous slurry at a fixed H2O/Na2O mole ratio = 11.7. The results show that the synthetic Al2O3–2SiO2 powders have polycondensed property and their compressive strengthes are similar to that of nature metakaolin geopolymer materials. The results also show that the water consumption is not the main influencing factor on electrical conductivity of harden geopolymer materials but it can intensively affect the microstructure of geopolymer materials. In addition, the electrical conductivity of harden geopolymer sample is investigated, and the results show that the geopolymer materials have a high ionic electrical conductivity of about 1.5 × 10−6 S cm−1 in air at room temperature.  相似文献   

15.
Ni–Ce/SiO2 catalysts were prepared by calcination under Ar, CO2, O2 and H2 ambience, and applied in CO2 reforming of methane for synthesis gas production. BET, XRD, XPS, TPR, SEM, TEM and TPH techniques were employed to characterize the fresh and used catalysts. Highly dispersed nickel oxides bearing stronger interaction with SiO2 prevented the metal sintering. The formation of reactive carbon species on Ni–Ce/SiO2 catalyst calcined under Ar ambience effectively promoted the carbon elimination and kept the catalyst more stable. Nevertheless, the oxygen storage capacity of CeO2 might partly lose on Ni–Ce/SiO2 calcined under H2 ambience. As a result, the inhibition of carbon elimination and the deposition of inert carbon were responsible for its partial deactivation.  相似文献   

16.
In this study, methane and methanol steam reforming reactions over commercial Ni/Al2O3, commercial Cu/ZnO/Al2O3 and prepared Ni–Cu/Al2O3 catalysts were investigated. Methane and methanol steam reforming reactions catalysts were characterized using various techniques. The results of characterization showed that Cu particles increase the active particle size of Ni (19.3 nm) in Ni–Cu/Al2O3 catalyst with respect to the commercial Ni/Al2O3 (17.9). On the other hand, Ni improves Cu dispersion in the same catalyst (1.74%) in comparison with commercial Cu/ZnO/Al2O3 (0.21%). A comprehensive comparison between these two fuels is established in terms of reaction conditions, fuel conversion, H2 selectivity, CO2 and CO selectivity. The prepared catalyst showed low selectivity for CO in both fuels and it was more selective to H2, with H2 selectivities of 99% in methane and 89% in methanol reforming reactions. A significant objective is to develop catalysts which can operate at lower temperatures and resist deactivation. Methanol steam reforming is carried out at a much lower temperature than methane steam reforming in prepared and commercial catalyst (275–325 °C). However, methane steam reforming can be carried out at a relatively low temperature on Ni–Cu catalyst (600–650 °C) and at higher temperature in commercial methane reforming catalyst (700–800 °C). Commercial Ni/Al2O3 catalyst resulted in high coke formation (28.3% loss in mass) compared to prepared Ni–Cu/Al2O3 (8.9%) and commercial Cu/ZnO/Al2O3 catalysts (3.5%).  相似文献   

17.
Nickel catalysts (10wt.%) supported on MgAl2O4 and γ-Al2O3 were prepared by the wet impregnation method and promoted with various contents of Ce0.75Zr0.25O2. X-ray diffraction (XRD), BET surface area, scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), H2-temperature programmed reduction (TPR) and CO2-temperature programmed desorption (TPD) were employed to observe the characteristics of the prepared catalysts. Ni/γ-Al2O3 and Ni/Ce0.75Zr0.25O2 (5wt.%)–MgAl2O4 showed better activity in CO2 methane reforming with 75.7(0.93) and 75.4(0.82) CH4 conversions (and H2/CO ratio). H2O was added to feed in the range of H2O/(CH4 + CO2): 0.1–0.5 to suppress reverse water gas shift (RWGS) effect and adjusting H2/CO ratio. The CH4 conversions (and H2/CO) increased to 81(1.1) with 0.5 water/carbon mole ratio in Ni/γ-Al2O3 and 85(1.2) with 0.2 water/carbon mole ratio in Ni/Ce0.75Zr0.25O2 (5wt.%)–MgAl2O4. The stability of Ni/Ce0.75Zr0.25O2 (5wt.%)–MgAl2O4 in the presence and absence of water was investigated. Coke formation and amount in used catalysts were examined by SEM and TGA, respectively. The results showed that the amount of carbon was suppressed and negligible coke formation (less than 3%) was observed in the presence of 0.2 water/carbon mole ratio over Ni/Ce0.75Zr0.25O2 (5wt.%)–MgAl2O4 catalyst.  相似文献   

18.
In this work, nanoparticles of Pt–Ni alloy were supported on a new kind of composite which composed of graphene sheets and meso-macroporous SiO2, and the composite supported Pt–Ni catalyst was applied to the preferential oxidation of CO (CO-PROX) in H2-rich gases. The bimetallic Pt–Ni alloy catalyst was characterized by using techniques of SEM, TEM, XRD, TPR, CO chemisorptions and XPS. The catalyst showed excellent catalytic performance for CO-PROX with high activity at low temperature, high selectivity and very good stability, which was attributed to the following characters of the catalyst: Pt–Ni nanoparticles were in alloy state and highly dispersed, Pt–Ni nanoparticles were preferentially loaded on the surface of graphene sheets, and the meso-macroporosity of the composite markedly improved the mass transferring ability. This is a case study, and this kind of catalysts can be extended to other gas–solid catalytic reactions.  相似文献   

19.
95%(gravity cast Mg–23.5Ni)–-5%Nb2O5 alloy was prepared by horizontal ball milling in n-hexane of gravity cast Mg–23.5wt%Ni with Spex milled Nb2O5. Melt spun Mg–23.5wt%Ni after heat treatment at 523 K for 1 h was also ground by planetary ball milling with finer Nb2O5 prepared by milling with NaCl. The activated 90%(melt spun Mg–23.5Ni)–10%Nb2O5 alloy shows higher hydriding and dehydriding rates than the activated 95%(gravity cast Mg–23.5Ni)–5%Nb2O5 alloy, thanks to the homogeneous distribution of fine Mg2Ni phase in melt spun Mg–23.5Ni and the finer Nb2O5 addition to melt spun Mg–23.5Ni, which leads to the effective diminution of the Mg particle size. The activated 90%(ms Mg–23.5Ni)–10%Nb2O5 alloy absorbs 4.70 wt%H at 573 K under 12 bar H2 for 10 min, and desorbs 4.75 wt%H at 573 K under 1.0 bar H2 for 25 min.  相似文献   

20.
Recast Nafion® composite membranes containing ZrO2–SiO2 binary oxides with different Zr/Si ratios are investigated for polymer electrolyte membrane fuel cells (PEMFCs) at temperatures above 100 °C. Fine particles of the ZrO2–SiO2 binary oxides, same as an inorganic filter, are synthesized from a sodium silicate and a carbonate complex of zirconium by a sol–gel technique. The composite membranes are prepared by blending a 10% (w/w) Nafion®-water dispersion with the inorganic compound. All composite membranes show higher water uptake than unmodified membranes, and the proton conductivity increases with increasing zirconia content at 80 °C. By contrast, the proton conductivity decreases with zirconia content for the composite membranes containing binary oxides at 120 °C. The composite membranes are tested in a 9-cm2 commercial single cell at both 80 °C and 120 °C in humidified H2/air under different relative humidity (RH) conditions. Composite membrane containing the ZrO2–SiO2 binary oxide (Zr/Si = 0.5) give the best performance of 610 mW cm−1 under conditions of 0.6 V, 120 °C, 50% RH and 2 atm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号