首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the effect of porosity-graded micro-porous layer (GMPL) on the performance of polymer electrolyte membrane fuel cells (PEMFCs) was studied in detail. The GMPL was prepared by printing micro-porous layers (MPL) with different content of NH4Cl pore-former and the porosity of the GMPL decreased from the inner layer of the MPLs at the membrane/MPL interface to the outer layer of the MPLs at the gas diffusion electrode/MPL interface. The morphology and porosity of the GMPLs were characterized and the performance of the cell with GMPLs was compared with those having conventional homogeneous MPLs. The result demonstrates that the fuel cells consisting of GMPL have better performance than those consisting of conventional homogeneous MPLs, especially at high current densities. Micro-porous layer with graded porosity is beneficial for the electrode process of fuel cell reaction probably by facilitating the liquid water transportation through large pores and gas diffusion via small pores in the GMPLs.  相似文献   

2.
In a direct methanol fuel cell (DMFC), optimized multilayer electrode design is critical to mitigate methanol crossover and improve cell performance. In this paper, we present a one-dimensional (1-D) two-phase model based on the saturation jump theory in order to explore the methanol and water transport characteristics using various multilayer electrode configurations. To experimentally validate the 1-D model, two different membrane electrode assemblies (MEAs) with and without an anode microporous layer (MPL) are fabricated and tested under various cell current density and methanol feed concentration conditions. Then, 1-D DMFC simulations are performed and the results compared to the experimental data. In general, the numerical predictions are in good agreement with the experimental data; thus, the 1-D DMFC simulations successfully model the effects of the anode MPL that were observed experimentally. In addition to the comparison study, additional numerical simulations are carried out to precisely examine the role of the anode and cathode MPLs and the effect of the hydrophobicity of the anode catalyst layer on the water and liquid saturation distributions inside the DMFCs. This paper demonstrates the quantitative accuracy of the saturation jump model for simulating multilayer DMFC MEAs and also provides greater insight into the operational characteristics of DMFCs incorporating multilayer electrodes.  相似文献   

3.
It is well known that a micro-porous layer (MPL) plays a crucial role in the water management of polymer electrolyte fuel cells (PEFCs), and thereby, significantly stabilizes and improves cell performance. To ascertain the exact roles of MPLs, a numerical MPL model is developed in this study and incorporated with comprehensive, multi-dimensional, multi-phase fuel-cell models that have been devised earlier. The effects of different porous properties and liquid-entry pressures between an MPL and a gas diffusion layer (GDL) are examined via fully three-dimensional numerical simulations. First, when the differences in pore properties and wettability between the MPL and GDL are taken into account but the difference in the entry pressures is ignored, the numerical MPL model captures a discontinuity in liquid saturation at the GDL|MPL interface. The simulation does not, however, capture the beneficial effects of an MPL on cell performance, predicting even lower performance than in the case of no MPL. On the other hand, when a high liquid-entry pressure in an MPL is additionally considered, the numerical MPL model predicts a liquid-free MPL and successfully demonstrates the phenomenon that the high liquid-entry pressure of the MPL prevents any liquid water from entering the MPL. Consequently, it is found from the simulation results that a liquid-free MPL significantly enhances the back-flow of water across the membrane into the anode, which, in turn, helps to avoid membrane dehydration and alleviate the level of GDL flooding. As a result, the model successfully reports the beneficial effects of MPLs on PEFC performance and predicts higher performance in the presence of MPLs (e.g., an increase of 67 mV at 1.5 A cm−2). This study provides a fundamental explanation of the function of MPLs and quantifies the influence of their porous properties and the liquid-entry pressure on water transport and cell performance.  相似文献   

4.
For a proton exchange membrane fuel cell (PEMFC), dry layer preparation was optimized and applied to fabricate a micro-porous layer (MPL) for a gas diffusion layer (GDL). The MPLs fabricated by dry layer preparation and the conventional wet layer preparation were compared by physical and electrochemical methods. The PEMFC using dry layer MPLs showed better performance than that using wet layer MPLs, especially when the cells were operated under conditions of high oxygen utilization rate and high humidification temperature of air. The mass transport properties of the GDLs with the dry layer MPLs were also better than with the wet layer MPLs, and were found to be related to the pore size distribution in GDLs. The differences in surface morphology and pore size distribution for the GDLs with the dry layer and wet layer MPLs were investigated and analyzed. The dry layer preparation for MPLs was found to be more beneficial for forming meso-pores (pore size in the range of 0.5–15 μm), which are important and advantageous for facilitating gas transport in the GDLs. Moreover, the GDLs with the dry layer MPLs exhibited better electronic conductivity and more stable hydrophobicity than those with the wet layer MPLs. The reproducibility of the dry layer preparation for MPLs was also satisfying.  相似文献   

5.
Microporous layers (MPLs) were prepared with different hydrophobic polymers to establish water management in polymer electrolyte membrane (PEM) fuel cells. Besides conventionally used polymers polytetrafluoroethylene (PTFE) and fluorinated ethylene propylene (FEP), two different molecular weights (MW) of polydimethylsiloxane (PDMS) polymer were used as hydrophobic materials in MPL. Membrane electrode assemblies (MEAs) having MPLs with low MW PDMS polymer exhibited the best fuel cell performance compared to the PTFE and FEP based ones. Thus it is concluded that PDMS polymer has a great potential to be used as hydrophobic material for MPL to reduce flooding phenomena in PEM fuel cell.  相似文献   

6.
Electrochemical losses as a function of the micro-porous layer (MPL) arrangement in Proton Exchange Membrane Fuel Cells (PEMFCs) are investigated by electrochemical impedance spectroscopy (EIS). Net water flux across the polymer membrane in PEMFCs is investigated for various arrangements of the MPL, namely with MPL on the cathode side alone, with MPL on both the cathode and the anode sides and without MPL. EIS and water transport are recorded for various operating conditions, such as the relative humidity of the hydrogen inlet and current density, in a PEMFC fed by fully-saturated air. The cell with an MPL on the cathode side alone has better performance than two other types of cells. Furthermore, the cell with an MPL on only the cathode increases the water flux from cathode to anode as compared to the cells with MPLs on both electrodes and cells without MPL. Oxygen-mass-transport resistances of cells in the presence of an MPL on the cathode are lower than the values for the other two cells, which indicates that the molar concentration of oxygen at the reaction surface of the catalyst layer is higher. This suggests that the MPL forces the liquid water from the cathode side to the anode side and decreases the liquid saturation in GDL at high current densities. Consequently, the MPL helps in maintaining the water content in the polymer membrane and decreases the cathode charge transfer and oxygen-mass transport resistances in PEMFCs, even when the hydrogen inlet has a low relative humidity.  相似文献   

7.
In this study, the influence of micro-porous layers (MPL) on polymer electrolyte membrane fuel cell (PEMFC) durability was investigated. Two fuel cells were built, one with a micro-porous layer on the anode side, and a second cell with MPL on both sides. Experiments were conducted by varying operational parameters such as current density, reactant stoichiometry, and inlet relative humidity. Fuel cell degradation was evaluated by measuring fluoride release rates. The largest factor determining fluoride release rate was found to be the presence of MPL; the cell with MPLs on both sides exhibited significantly reduced fluoride release rates compared to that of cell with one MPL. Increasing the current density also reduced the fluoride release rate for cells with only one MPL whereas there was only a moderate effect on cells with two MPLs. Microscopy analysis showed small but significant changes in ionomer layer thickness. Polarization measurements indicated that there was little change in the performance for both cells over the test period.  相似文献   

8.
The microporous layer (MPL) as a part of diffusion medium has an important impact on mass transfer of proton exchange membrane fuel cell (PEMFC). In this study, MPLs of gas diffusion layers (GDLs) are prepared with different carbon blacks, and the properties of carbon blacks and their effects as MPLs on cell performance are systematically investigated. The results show that the GDL prepared by Acetylene Black (ACET) exhibits the best performance with a maximum power density up to 2.05 W cm−2. Moreover, it still maintains extremely high performance with increasing current density even at humidity condition of 100% relative humidity, which means its excellent water/gas transportation capacity. This study contributes to deeply understanding the correlations between the properties of MPL material itself and their corresponding performance exhibited in cell. It also provides an important reference for enhancing cell performance and further advancing the practical applications of MPLs in PEMFC field.  相似文献   

9.
A numerical model for a PEM fuel cell has been developed and used to investigate the effect of some of the key parameters of the porous layers of the fuel cell (GDL and MPL) on its performance. The model is comprehensive as it is three-dimensional, multiphase and non-isothermal and it has been well-validated with the experimental data of a 5 cm2 active area-fuel cell with/without MPLs. As a result of the reduced mass transport resistance of the gaseous and liquid flow, a better performance was achieved when he GDL thickness was decreased. For the same reason, the fuel cell was shown to be significantly improved with increasing the GDL porosity by a factor of 2 and the consumption of oxygen doubled when increasing the porosity from 0.40 to 0.78. Compared to the conventional constant-porosity GDL, the graded-porosity (gradually decreasing from the flow channel to the catalyst layer) GDL was found to enhance the fuel cell performance and this is due to the better liquid water rejection. The incorporation of a realistic value for the contact resistance between the GDL and the bipolar plate slightly decreases the performance of the fuel cell. Also the results show that the addition of the MPL to the GDL is crucially important as it assists in the humidifying of the electrolyte membrane, thus improving the overall performance of the fuel cell. Finally, realistically increasing the MPL contact angle has led to a positive influence on the fuel cell performance.  相似文献   

10.
Gas diffusion layers (GDLs) of direct methanol fuel cells (DMFCs), consisting of a microporous layer (MPL) and a back layer (BL), influence the cell performance and stability significantly due to the critical function that the GDL undertook, i.e., distribution of reactants and removal of the products in electrodes. The hydrophilic/hydrophobic properties of the GDLs are required to tailor to the transport/transfer of reactants/products depending on a specific electrode reaction. One important way to adjust the hydrophobic/hydrophilic properties of GDLs is to vary PTFE content in GDLs. In this paper, we employ infrared spectroscopy technique, specifically, diffuse reflection (DR) method and attenuation total reflection (ATR) method, to determine the PTFE content in both MPLs and BLs quantitatively by comparing the measured C-F intensity with the pre-calibrated standard plots. Compared to the ATR method, the DR method takes advantages of sensitivity, wide range and precision. By the DR method, we succeed in observing that PTFE in MPLs migrates to BLs, consistent with the corresponding EDX results for a sample experienced 600 h lifetime test, suggesting DR method an effective approach to determine quantitatively the hydrophilic/hydrophobic properties of both MPLs and BLs.  相似文献   

11.
In this study, a comprehensive computational model based on a full statistical approach was developed to investigate the heterogeneous mass transport properties in the metal foam channels, gas diffusion layers (GDLs), and microporous layers (MPLs) of polymer electrolyte fuel cells (PEFCs) at the 95% confidence level. A series of channels, GDLs, and MPLs were, respectively, generated to reflect the random heterogeneous structures and transport characteristics. The critical hydrophobic pore radius in the mixed wettability GDLs was computed by applying a modified Leverett function. Furthermore, the gas transport phenomenon through a sufficient number of porous transport media was simulated using a D3Q19 (ie, three‐dimensional, 19 velocities) lattice Boltzmann method, and the corresponding mass transport characteristics were mathematically presented as a function of the porosity. The permeabilities in the channels, GDLs, and MPLs were derived from the pressure gradient and the simulated velocity distribution. It was found that the effective mass diffusion coefficient in the GDLs is mainly influenced by molecular diffusion. Nevertheless, Knudsen diffusion is the dominant mass transfer mechanism in the MPLs, because of small pore diameters. In addition, critical hydrophobic pore radius was derived using a modified Leverett function, which enables to estimate the fraction of pores larger than the critical pore radius in GDLs for effective water transport. Moreover, the interfacial areal contact ratio between two adjacent porous media (ie, channel/GDL and GDL/MPL) was calculated. The calculations indicated that the variation in the local porosity of the porous media has a significant influence on the interfacial connections. The proposed model is expected to improve the prediction performance of porous heterogeneous transport media in electrochemical energy systems and the optimization of porous media structures.  相似文献   

12.
In this paper, the effect of the pore size distribution of a micro-porous layer (MPL) on the performance of polymer electrolyte membrane fuel cells (PEMFC) was investigated using self-made gas diffusion layers (GDLs) with different MPLs for which the pore size distribution was modified using pore forming agents under different drying conditions. When MPL dried at high temperature, more macro pores, approximately 1,000–20,000 nm in diameter, and less micro pores, below 100 nm, were observed relative to when MPL was dried at low temperature. Self-made GDLs were characterized by a field-emission scanning electron microscope (FE-SEM), mercury porosimetry and self-made gas permeability measurement equipment. The performance of the single cells was measured under two different humidification conditions. The results demonstrate that the optimum pore size distribution of MPL depended on the cell operating humidification condition. The MPL dried at high temperature performed better than the MPL dried at low temperature under a low humidification condition; however, MPL dried at low temperature performed better under a high humidification condition.  相似文献   

13.
The conventional anode design of direct ethanol fuel cells (DEFCs) usually encounter a problem on the performance stability and ethanol mass transport, i.e., ethanol crossover. Aiming to alleviate these issues, in this study, the anode with different configurations for DEFC was designed and fabricated with different catalyst layer (CL) and microporous layer (MPL) arrangements. The four types of membrane electrode assembly (MEA) is named with MEA-1 (with pretreated carbon paper (PCP) and PtCL), MEA-2 (with PCP, MPL and PtCL), MEA-3 (with PCP, MPL, PtCL and PdCL) and MEA-4 (with PCP, MPL, PtCL, MPL and PdCL). The performance, stability and ethanol crossover of MEAs were tested and measured for continuous long-term operation for 120 h, while the morphological characterization was analyzed. Based on the results, power density for each MEA decreased with time, while ethanol crossover increased gradually. The MEA-3 with additional PdCL shows a highest performance and stability about 20 W/m2, and has a lowest ethanol crossover's magnitude. The highest ethanol crossover was obtained using MEA-1 at 3.7 mg/m2·s. Higher ethanol crossover had caused low stability of DEFC performance which result higher irreversible degradation. Moreover, based on characterization, elemental mapping and EDX illustrated phenomena of membrane swelling, delamination of electrode from membrane, and CL loss after stability test for 5 days for all MEAs. The significance of anode structure design was proven in this current study. The anode design of double-layered CL has potential to use at anode structure to reduce ethanol crossover rate, thereby improving DEFC performance and stability.  相似文献   

14.
Traditional dense microporous layers (MPLs) are suitable for low-temperature proton exchange membrane fuel cells (PEMFCs), but they greatly hinder mass transport in high-temperature PEMFCs. Here, we report a novel cathode MPL based on reticulated polyaniline nanowires that were grown on carbon paper via in-situ electropolymerization. The maximum power density of the high-temperature PEMFC based on the new MPL was 476 mW/cm2, which was 36% higher than that based on a conventional MPL. Oxygen gain tests and electrochemical impedance spectroscopy showed that the new MPL accelerated oxygen transfer due to its unique pore size distribution, which ultimately improved the performance of the HT-PEMFC.  相似文献   

15.
Reducing methanol crossover from the anode to cathode in direct methanol fuel cells (DMFCs) is critical for attaining high cell performance and fuel utilization, particularly when highly concentrated methanol fuel is fed into DMFCs. In this study, we present a novel design of anode diffusion media (DM) wherein spatial variation of hydrophobicity along the through-plane direction is realized by special polytetrafluoroethylene (PTFE) coating procedure. According to the capillary transport theory for porous media, the anode DM design can significantly affect both methanol and water transport processes in DMFCs. To examine its influence, three different membrane-electrode assemblies are fabricated and tested for various methanol feed concentrations. Polarization curves show that cell performance at high methanol feed concentration conditions is greatly improved with the anode DM design with increasing hydrophobicity toward the anode catalyst layer. In addition, we investigate the influence of the wettability of the anode microporous layer (MPL) on cell performance and show that for DMFC operation at high methanol feed concentration, the hydrophilic anode MPL fabricated with an ionomer binder is more beneficial than conventional hydrophobic MPLs fabricated with PTFE. This paper highlights that controlling wetting characteristics of the anode DM and MPL is of paramount importance for mitigating methanol crossover in DMFCs.  相似文献   

16.
Water management remains a significant challenge for the Proton Exchange Membrane Fuel Cell (PEMFC) with respect to performance, lifetime and operational flexibility. In recent years, microporous layers (MPL) have been widely used on the cathode side of the PEMFC in order to improve fuel cell performance and water management capabilities. Many modeling and experimental studies have with limited success attempted to analyze the underlying mechanisms that are responsible for the performance improvement due to the MPL. In this study, porous inserts along with various in-situ experimental techniques are used to investigate the MPLs. It was observed that the anode pressure drop increased when a cathode MPL was present, indicating water cross-over from the cathode towards the anode side. Further testing identified that the MPL improved cell performance due to the reduction of water saturation in the cathode catalyst layer, which resulted in enhanced oxygen diffusion. The influence of the MPL on the anode side was also studied with the aid of porous inserts and other techniques, and it was observed that the anode MPL improves cell voltage stability and reduces water accumulation in the anode catalyst layer. The present investigation provides further important information on the critical role of the MPL in the PEMFC.  相似文献   

17.
A highly reliable experimental system that consistently closed the overall water balance to within 5% was developed to study the role of a microporous layer (MPL), attached to carbon paper porous transport layer (PTL), on the water transport and performance of a standard 100 cm2 active area PEM fuel cell. Various combinations of cells were built and tested with PTLs at the electrodes using either carbon fibre paper with a MPL (SGL 10BB) or carbon fibre paper without a MPL (SGL 10BA). The net water drag coefficient at three current densities (0.3, 0.5 and 0.7 A cm−2) for two combinations of anode/cathode relative humidity (60/100% and 100/60%) and stoichiometric ratios of H2/air (1.4/3 and 1.4/2) was determined from water balance measurements. The addition of a MPL to the carbon fibre paper PTL at the cathode did not cause a statistically significant change to the overall drag coefficient although there was a significant improvement to the fuel cell performance and durability when a MPL was used at the cathode. The presence of a MPL on either electrode or on both electrodes also exhibited similar performance compared to when the MPL was placed at the cathode. These results indicate that the presence of MPL indeed improves the cell performance although it does not affect the net water drag coefficient. The correlation between cell performance and global water transport cannot be ascertained and warrants further experimental investigation.  相似文献   

18.
Knowledge of the absolute permeability for the various porous layers is necessary to obtain accurate profiles for water saturation within the membrane electrode assembly (MEA) in a two-phase model of a polymer electrolyte membrane fuel cell (PEMFC). In this paper, the gas permeability of gas diffusion layers (GDLs) coated with microporous layers (MPLs) of various carbon loadings for two different carbon blacks have been experimentally measured. The permeability of the GDL was found to decrease by at least one order of magnitude after the MPL-coating. Also, the permeability of the MPLs was shown to be lower than that of the carbon substrate by 2–3 orders of magnitude. Further, it was found that the gas permeability of the MPLs changes significantly from one carbon loading to another despite the use of a single weight composition for all the MPLs coated, namely 20% PTFE and 80% carbon black. This signifies the possible inaccuracy in estimating the MPL permeability through employing the cross-section SEM images as they do not resolve the MPL penetration into the carbon substrate. Finally, the MPL sintering was found to slightly decrease the permeability of the GDL.  相似文献   

19.
This study presents the benefit to an operating direct methanol fuel cell (DMFC) by coating a micro-porous layer (MPL) on the surface of anode gas diffusion layer (GDL). Taking the membrane electrode assembly (MEA) with and without the anodic MPL structure into account, the performances of the two types of MEA are evaluated by measuring the polarization curves together with the specific power density at a constant current density. Regarding the cell performances, the comparisons between the average power performances of the two different MEAs at low and high current density, various methanol concentrations and air flow rates are carried out by using the electrochemical impedance spectroscopy (EIS) technique. In contrast to conventional half cell EIS measurements, both the anode and cathode impedance spectra are measured in real-time during the discharge regime of the DMFC. As comparing each anode and cathode EIS between the two different MEAs, the influences of the anodic MPL on the anode and cathode reactions are systematically discussed and analyzed. Furthermore, the results are used to infer complete and reasonable interpretations of the combined effects caused by the anodic MPL on the full cell impedance, which correspond with the practical cell performance.  相似文献   

20.
The optimal design of the cathode gas diffusion layer (GDL) for direct methanol fuel cells (DMFCs) is not only to attain better cell performance, but also to achieve better water management for the DMFC system. In this work, the effects of both the PTFE loading in the cathode backing layer (BL) as well as in the micro-porous layer (MPL) and the carbon loading in the MPL on both water transport and cell performance were investigated experimentally. The experimental data showed that with the presence of a hydrophobic MPL in the GDL, the water-crossover flux through the membrane decreased slightly with increasing the PTFE loading in the BL. However, a higher PTFE loading in the BL not only lowered cell performance, but also resulted in an unstable discharging process. It was also found that the PTFE loading in the MPL had little effect on the water-crossover flux, but its effect on cell performance was substantial: the 40-wt% PTFE loading in the MPL was found to be the optimal value to achieve the best performance. The experimental results further showed that increasing the carbon loading in the MPL significantly lowered the water-crossover flux, but a too high carbon loading would decrease the cell performance as the result of the increased oxygen transport resistance; the 2.0-mg C cm−2 carbon loading was found to exhibit the best performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号