首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, effects of Au and CuO loadings in Au/CuO–ZnO nanocatalysts for preferential oxidation of carbon monoxide in H2-rich streams (PROX) are investigated. CuO–ZnO supports were synthesized by a co-precipitation method. Au was also incorporated into the catalysts by a deposition-precipitation procedure. The catalysts were characterized by XRD, BET surface area, FESEM, HRTEM, H2-TPR, FTIR, and CO-TPD. 2–10 nm Au nanoparticles are dispersed on CuO–ZnO support and significantly enhance the reducibility of CuO. The Au/CuO–ZnO catalysts containing low amount of CuO were found to be more active for PROX compared to the Au/ZnO catalyst. Moreover, as more CuO is added to Au/ZnO, the CO2 selectivity increases in the whole PROX temperature range. The catalyst containing 2 wt% Au and 1 wt% CuO on ZnO exhibited the highest activity and selectivity in the operating temperature range of PEM fuel cells. The activity of this catalyst also remained almost intact during 900 min of PROX time on stream at 80 °C.  相似文献   

2.
The CuO–CeO2 catalyst (CuO loading: 15 wt%) was prepared by a novel chemisorption-hydrolysis method, and employed for the preferential oxidation of CO (CO PROX) in H2-rich stream. For comparison, several other conventional methods such as impregnation, co-precipitation and deposition-precipitation were also used to prepare the catalyst. It is found that the CuO–CeO2 catalyst prepared by chemisorption-hydrolysis method exhibits the best catalytic performance, giving not only the widest temperature window (120–170 °C) for CO complete conversion, but also the highest oxygen to CO2 selectivity of 99.9% at 120 °C. The results of XRD, N2O chemisorption and in-situ FT-IR conformably indicate that this catalyst possesses the highest dispersion of Cu species, which facilitates the formation of Cu+ carbonyl species, and simultaneously prevents the adsorption and oxidation of H2. With the increase of reaction temperature, Cu+ is gradually reduced to Cu0, enhancing the adsorption and oxidation of H2, as a result, the selectivity of oxygen towards CO2 is lowered obviously. The presence of CO2 and H2O exhibits negative effects on the catalytic performance, shortening the activity window to 150–170 °C region and decreasing the CO2 selectivity to 87% at the temperature for the initial 100% conversion of CO. Based on the above study, a potential reaction pathway for CO PROX over the CuO–CeO2 catalyst is proposed.  相似文献   

3.
The CeO2/CuO and CuO/CeO2 catalysts were synthesized by the hydrothermal method and characterized via XRD, SEM, H2-TPR, HRTEM, XPS and N2 adsorption–desorption techniques. The study shows that the rod-like structure is self-assembled CeO2, and both hydrothermal time and Ce/Cu molar ratio are important factors when the particle-like CeO2 is being self-assembled into the rod-like CeO2. The CuO is key active component in the CO-PROX reaction, and its reduction has a negative influence on the selective oxidation of CO. The advantage of the inverse CeO2/CuO catalyst is that it still can provide sufficient CuO for CO oxidation before 200 °C in the hydrogen-rich reductive gasses. The traditional CuO/CeO2 catalyst shows better activity at lower temperature and the inverse CeO2/CuO catalysts present higher CO2 selectivity when the CO conversion reaches 100%. The performance of mixed sample verifies that they might be complementary in the CO-PROX system.  相似文献   

4.
Copper catalysts supported on ceria, zirconia and niobia were prepared by combustion method with urea, containing a CuO loading of 6 wt.%, and tested on selective oxidation of CO. The characterization of the samples by X-ray diffraction (XRD) presented the formation of solid solution on CuO–CeO2 catalyst and a change in crystalline structure of the support with copper insertion on ZrO2 and Nb2O5 catalysts. The analysis of temperature-programmed reduction (TPR) revealed different interaction degrees of copper with the supports, with reduction peaks between 222 and 390 °C. The temperature-programmed desorption of CO (TPD-CO) profiles showed formation of CO2 and H2 only for the ceria and zirconia catalysts. In relation to the catalytic tests, the CuO–CeO2 catalyst presented the best performance, with CO conversion of 95% at 150 °C up to 45 h on stream, and CO2 selectivity of 55%.  相似文献   

5.
A study has been carried out on the effect of combining the metallic (CuO–ZnO–Al2O3) and acid (HZSM-5 zeolite treated with NaOH) functions, and of their mass ratio, on the kinetic performance in the steam reforming of dimethyl ether (SRD). The runs have been conducted in a fluidized bed reactor in the 225–325 °C range, and the reaction indices (dimethyl ether and methanol conversions, and H2 and CO yields) have been explained based on the physico-chemical properties of the catalyst.  相似文献   

6.
The CuO supports with different morphology were prepared using the precipitation method. The inverse CeO2/CuO catalysts were synthesized by the impregnation method, and characterized via XRD, H2-TPR, SEM, TEM, XPS and N2 adsorption-desorption techniques. The study showed that CO oxidation took place at the interface of CeO2–CuO catalysts. The CeO2/CuO catalysts maintained their morphologies, structure and the length of periphery at the CeO2–CuO interface in the hydrogen-rich reaction gasses during the reaction. The two-dimensional and homogeneous petal morphology of support was most favorable for the formation of long periphery at the CeO2–CuO interface, therefore the CeO2 supported on the CuO with petal morphology presented good catalytic activity.  相似文献   

7.
The catalytic steam gasification of pig compost (PC) for hydrogen-rich gas production was conducted in a fixed-bed reactor. The influence of the catalyst and reactor temperature on yield and product composition was studied at the temperature range of 700–850 °C, for weight hourly space velocity (WHSV) in the range of 0.30–0.60 h−1. The results indicate that the developed NiO on modified dolomite (NiO/MD) catalyst reveals better catalytic performance on the tar elimination and hydrogen yield than calcined MD or NiO/γ-Al2O3 catalyst. Meanwhile, the lower WHSV and higher reactor temperature can contribute to more hydrogen production and gas yield. Moreover, the char from catalytic steam gasification of PC has a highest ash content of 75.84% at 850 °C. In conclusion, pig compost is a potential candidate for hydrogen gas production through catalytic steam gasification technology.  相似文献   

8.
The precipitation processes of CuO–CeO2 catalysts preparation were modified, and their optimized copper content were also studied in detail. As indicated by the experimental results, the WGS catalytic activities of the CuO–CeO2 catalysts can be ranked as: stepwise precipitation (SP) > deposition–precipitation (DP) > co-precipitation (CP), suggesting that stepwise precipitation (i.e., a modified DP) is a convenient and effective method to prepare CuO–CeO2 WGS catalysts. The optimized copper contents of CuO–CeO2–SP and CuO–CeO2–CP catalysts are 20 wt.% and 25 wt.%, respectively. Their catalytic activities can be strongly correlated with the results from XRD, XPS, Raman, N2-physisorption, N2O chemisorption and H2-TPR. For DP and SP, a certain amount of copper has substitutively incorporated into ceria lattice with multiple Ce3+ and oxygen vacancies, which is considered as one relatively strong interaction between copper and ceria support. The substitutional incorporation of copper creates larger lattice distortion, lattice defect (embodying as larger lattice cell contraction of CeO2, microstrain and Raman shift) and stronger reducibility (i.e., lower reduction temperature of H2-TPR), as a consequence, higher surface energy and catalytic activity for WGS reaction. While for CP, copper nitrate and cerium nitrate were simultaneously precipitated, resulting in the burial of many copper species in ceria supports, i.e., occupancy incorporation of isolated copper into ceria lattice vacant site, which is considered as another weak interaction between copper and ceria support. Accordingly, combined with N2O chemisorption results, it is demonstrated that surface copper species of CuO–CeO2–CP are fewer and less active than those of CuO–CeO2–DP and CuO–CeO2–SP. Lastly, there is a direct relationship between the pore volume along with most probable pore size of the as-synthesized catalysts and their corresponding catalytic activities for WGS reaction.  相似文献   

9.
Autothermal reforming (ATR) of iso-octane in the presence of Rh-based catalysts (0.5 wt% of Rh) supported onto γ-Al2O3, CeO2, and ZrO2 were initially carried out at 700 °C with a S/C ratio of 2.0, an O/C ratio of 0.84, and a gas hourly space velocity (GHSV) of 20,000 h−1. The activity of Rh/γ-Al2O3 was found to be higher than Rh/CeO2 and Rh/ZrO2, with H2 and (H2 + CO) yields of 1.98 and 2.48 mol/mol C, respectively, after 10 h. This Rh/γ-Al2O3 material, however, was potentially susceptible to carbon coking and produced 3.5 wt% of carbon deposits following the reforming reaction, as evidenced by C, H, N, and S elemental analysis. In contrast, Rh/CeO2 catalyst exhibited lower activity but higher stability than Rh/γ-Al2O3, with nearly no carbon being formed within 10 h. To combine the superior activity originated from Rh/γ-Al2O3 with high stability from Rh/CeO2, Rh/CeO2/γ-Al2O3 catalysts with different CeO2 contents were synthesized and examined for the ATR reactions of iso-octane. Compared to Rh/γ-Al2O3, the newly prepared Rh/CeO2/γ-Al2O3 catalysts (0.5 wt% of Rh and 20 wt% of CeO2) showed even enhanced activity during 10 h, and H2 and (H2 + CO) yields were calculated to be 2.08 and 2.62 mol/mol C, respectively. In addition, as observed with Rh/CeO2, the catalyst was further found to be stable with less than 0.3 wt% of carbon deposition after 10 h. The Rh/γ-Al2O3 and Rh/CeO2/γ-Al2O3 catalysts were eventually tested for ATR reactions using commercial gasoline that contained sulfur, aromatics, and other impurities. The Rh/γ-Al2O3 catalyst was significantly deactivated, showing decreased activity after 4 h, while the Rh/CeO2/γ-Al2O3 catalyst proved to be excellent in terms of stability against coke formation as well as activity towards the desired reforming reaction, maintaining its ability for H2 production for 100 h.  相似文献   

10.
Steam reforming (SRM) and oxidative steam reforming of methanol (OSRM) were carried out over a series of coprecipitated CuO–CeO2 catalysts with varying copper content in the range of 30–80 at.% Cu (= 100 × Cu/(Cu + Ce)). The effects of copper content, reaction temperature and O2 concentration on catalytic activity were investigated. The activity of CuO–CeO2 catalysts for SRM and OSRM increased with the copper content and 70 at.% CuO–CeO2 catalyst showed the highest activity in the temperature range of 160–300 °C for both SRM and OSRM. After SRM or OSRM, the copper species in the catalysts observed by XRD were mainly metallic copper with small amount of CuO and Cu2O, an indication that metallic copper is an active species in the catalysis of both SRM and OSRM. It was observed that the methanol conversion increased considerably with the addition of O2 into the feed stream, indicating that the partial oxidation of methanol (POM) is much faster than SRM. The optimum 70 at.% CuO–CeO2 catalyst showed stable activities for both SRM and OSRM reactions at 300 °C.  相似文献   

11.
Au–Cu/ceria bimetallic catalysts were prepared incorporating Au by incipient wetness impregnation (IWI) and deposition-precipitation (DP) methods (with loadings of 1 wt.% and 7 wt.% of Au and Cu, respectively). The as-prepared catalysts were characterized by techniques such as BET, XRD, Raman, XPS, H2-TPR, CO-TPD and Oxygen Storage Capacity (OSC) measurements. The results indicated a good dispersion of gold and copper for copper ceria catalyst and Au–Cu bimetallic catalysts. Addition of Au to CuO/CeO2 increases highly the capacity to release lattice oxygen to oxidized CO at low temperatures compared to pure CuO/CeO2. Au/CeO2 and Au–CuO/CeO2 catalyst prepared by DP show higher OSC value than counterparts prepared by IWI, either at 120 and 250 °C. Also, gold-containing catalysts prepared by DP show lower temperature of reduction that the samples prepared by IWI as a consequence of the higher dispersion of gold in the former samples. The presence of gold at different oxidation states was observed by XPS analysis. Preparation method strongly affects to the atom ratio of Au and Au + Cu with respect to surface ceria. The gold incorporation method was a key factor that enhances the redox properties and activity in both WGS and OWGS reactions. The present study shows the gas phase oxygen enhanced the activity of monometallic CuO/ceria and bimetallic Au–Cu/ceria prepared by IWI and DP methods in both WGS and OWGS reactions. AuCC catalyst prepared by DP shows higher hydrogen yield and also higher CO conversion than other prepared by IWI during OWGS reaction.  相似文献   

12.
A bi-function catalyst containing CuZnAlCr and HZSM-5 was used to generate hydrogen by stream reforming of dimethyl ether (SRD) in a metal foam micro-reactor and a fix-bed reactor. Dimethyl ether conversion of 99% and hydrogen yield of >95% was reached with HZSM-5/CuZnAlCr (mass ratio of 1:1) in the micro-reactor. A suitable balance between the dimethyl ether hydrolysis and methanol reforming steps requires the proper acidity and the metal sites. The CuZnAlCr/HZSM-5 properties, effect of CuZnAlCr to HZSM-5 mass ratio were investigated in the metal foam micro-reactor. Moreover, CO was removed from hydrogen-rich gas by preferential oxidation reaction (CO-PrOx) with PtFe/γ-Al2O3 catalyst in a similar metal foam micro-reactor follows the SRD stage. With the optimized O2/CO ratio and reaction temperature, the CO concentration dropped to <10 ppm and hydrogen yield of ∼90% were achieved in the new-type SRD-COPrOx system. The SRD-COPrOx system provide a constant hydrogen production with CO concentration lower than 10 ppm during 20 h. The results indicate that metal foam micro-reactor has the great potential in the DME steam reforming to supply hydrogen for low-temperature fuel cells.  相似文献   

13.
Cu–Ni/γ-Al2O3 catalysts with different metal contents for dimethyl ether steam reforming (DME SR) were prepared by the method of deposition–precipitation. Characterization of specific surface area measurement (BET), X-ray diffraction (XRD) and hydrogen temperature-programmed reduction (H2-TPR) revealed that nickel improved the dispersion of copper, increased the interaction between copper and γ-Al2O3, and therefore, inhibited the sintering of copper. Ammonia temperature-programmed desorption (NH3-TPD) showed that metal particles could occupy the acid sites, leading to the decrease in acid amount and acid strength of Cu–Ni/γ-Al2O3 catalyst. Kinetic measurements indicated that γ-Al2O3 is vital for DME SR and a higher content of γ-Al2O3 in catalyst was needed. The addition of nickel suppressed the water gas shift (WGS) reaction. Initial durability testing showed that the conversion of DME over Cu–Ni/γ-Al2O3 catalyst was always almost complete during the 30 h experimental reaction time. Therefore, Cu–Ni/γ-Al2O3 could be a potential DME SR catalyst for the production of hydrogen.  相似文献   

14.
A self-sustained electrochemical promotion (SSEP) catalyst is synthesized for partial oxidation reforming (POXR) of CH4 to produce syngas (H2 and CO) at a relatively low temperature ranging from 350 to 650 °C. The SSEP catalyst is comprised of 4 components: microscopic Ni/Cu/CeO2 anode, La0.9Sr0.1MnO3 cathode, copper as electron conductor, and yttria-stabilized-zirconia as oxygen ion conductor, which form microscopic electrochemical cells to enable the self-sustained electrochemical promotion for the POXR process. The SSEP catalyst exhibited much better catalytic performance in POXR of CH4 than a Ni–Cu–CeO2 catalyst and a commercial Pt–CeO2 catalyst. The CH4 conversion over the SSEP catalyst is 29.4% at 350 °C and reaches 100% at 550 °C and the maximum selectivity to H2 is on the level of 90% at 450–650 °C under a GHSV of 42,000 h−1. The mechanism of the SSEP is discussed.  相似文献   

15.
The solvothermal method was used to prepare the CuO precursor with cotton-ball-like morphology in order to obtain the CeO2/CuO catalysts with high BET surface area. The catalysts were characterized via SEM, XRD, H2-TPR, ICP, HRTEM and N2 adsorption–desorption techniques. The study shows that CeO2 and CuO interact on the contact interface. The interaction of oxides switches on CO oxidation at 55 °C and the synergistic effect of interaction also improves H2 oxidation at 95 °C. CO oxidation takes place at the contact interface of CeO2 and CuO. The high BET surface area and good dispersion of catalysts can be more helpful for the presence of accumulated long periphery at interface of CeO2 and CuO than the larger CeO2 particles when most of CeO2 particles pile into the small clusters and distribute on the bulk CuO. The CeO2/CuO catalyst with 1:2 Ce/Cu molar ratio has the highest BET surface area and better dispersion of CeO2 among the catalysts, therefore it display good catalytic activity, selectivity and stability.  相似文献   

16.
The structural and functional roles of varying amounts of lanthana in co-precipitated high temperature Fe2O3/Cr2O3/CuO water–gas shift catalysts were studied at 1 atm and 350–425 °C temperature range.  相似文献   

17.
Low temperature water–gas shift (WGS) reaction has been carried out at the gas hourly space velocity of 72,152 h−1 over Cu–CeO2 catalyst prepared by a co-precipitation method. Cu loading was optimized to obtain highly active co-precipitated Cu–CeO2 catalysts for low temperature WGS. 80 wt% Cu–CeO2 exhibited the highest CO conversion as well as the most stable activity (XCO > 46% at 240 °C for 100 h). The excellent catalytic performance is mainly due to a strong metal to support interaction, resulting in the prevention of Cu sintering.  相似文献   

18.
《Journal of power sources》2006,159(2):1266-1273
In order to supply pure hydrogen to proton exchange membrane (PEM) fuel cells and avoid CO poisoning, selective CO oxidation in H2 was studied over Ce-Pt/γ-Al2O3. Adding the Ce promoted the CO conversion and selectivity of Pt/γ-Al2O3 with changing loading weights of Pt and Ce, oxygen concentration, residence time, and the composition of gases (H2O, CO2, and N2). At 250 °C, adding H2O to the feed gas enhanced the CO conversion due to the water–gas shift reaction. While, adding CO2 to the feed gas suppressed the CO conversion due to the reversible water–gas shift reaction. In situ BET and XRD tests showed that well-dispersed metallic Pt particles (−2 nm) existed on the Ce oxide over the alumina support, which helps to supply oxygen to the Pt for a high activity of CO oxidation and selectivity.  相似文献   

19.
Meso–macroporous alumina supported CuO–CeO2 catalysts were prepared by citrate, urea combustion and impregnation methods. The effect of loading methods on the microstructure of the catalysts, the interaction between copper and ceria and the catalytic performance for preferential oxidation of CO in hydrogen-rich gases was investigated. The prepared monolithic catalysts were characterized by using techniques of N2 adsorption and desorption, SEM, XRD, HRTEM and TPR. The results showed that the loading methods markedly influenced the catalyst structure and the catalytic performance. The citrate and urea combustion methods favored the formation of the interaction between copper and ceria. Compared with the urea combustion method, the citrate method led to smaller ceria particles on the alumina support. The meso–macroporous monolithic catalysts prepared by the citrate method maintained the structural characteristics of the highly active CuO–CeO2 catalysts, and showed good catalytic performance in CO preferential oxidation in the simulated reformate gases containing water and CO2.  相似文献   

20.
The pre-reforming of commercial liquefied petroleum gas (LPG) was investigated over Ni–CeO2 catalysts at low steam to carbon (S/C) molar ratios less than 1.0. It was found that the catalytic activity and selectivity depended strongly on the nature of the support and the interaction between Ni and CeO2. The Ni–CeO2/Al2O3 catalysts, which were prepared by impregnating boehmite (AlOOH) with an aqueous solution of cerium and nickel nitrates, exhibited the optimal catalytic activity and remarkable stability for the steam reforming of LPG in the temperature range of 275–375 °C. The effects of CeO2 loading, reaction temperature and S/C ratio on the catalytic behavior of the Ni–CeO2/Al2O3 catalysts were discussed in detail. The results showed that the catalysts with 10 wt.% CeO2 had the highest catalytic activity, and higher S/C ratios contributed to LPG reforming and the methanation of carbon oxides and hydrogen. The XRD and H2-TPR analyses revealed that the strong interaction between Ni and CeO2 resulted in the formation of CeAlO3 in the Ni–CeO2/Al2O3 catalysts reduced. The stability tests of 15Ni–10CeO2/Al2O3 catalyst at 350 °C indicated that the catalyst was stable, and the stability could be enhanced by increasing S/C ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号