首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Hydrogen vehicles are already a reality, However, consumers will be reluctant to purchase hydrogen vehicles (or any other alternative fuel vehicle) if they do not perceive the existence of adequate refueling infrastructure that reduces the risk of running out of fuel regularly while commuting to acceptable levels. This fact leads to the need to study the minimum requirements in terms of fuel availability required by drivers to achieve a demand for hydrogen vehicles beyond potential early-adopters.This paper studies consumer preferences in relation to the design of urban hydrogen refueling infrastructure. To this end, the paper analyzes the results of a survey carried out in Andalusia, a region in southern Spain, on drivers' current refueling tendencies, their willingness to use hydrogen vehicles and their minimum requirements (maximum distance to be traveled to refuel and number of stations in the city) when establishing a network of hydrogen refueling stations in a city. The results show that consumers consider the existence in cities of an infrastructure with a number of refueling stations ranging from approximately 10 to 20% of the total number of conventional service stations as a requisite to trigger the switch to the use of hydrogen vehicles. In addition, these stations should be distributed in response to the drivers’ preferences to refuel close to home.  相似文献   

2.
For optimizing locations of hydrogen refueling stations, two popular approaches represent fuel demands as either nodes or paths, which imply different refueling behavior and definitions of convenience. This paper compares path-based vs. node-based models from the perspective of minimizing total additional travel time and feasibly covering all demands with the same number of stations. For this comparison, two new station location models are introduced that extend the Flow Capturing Location Model (FCLM) and p-Median Problem (PMP) by consistently defining upper limits on vehicle driving range and maximum inconvenience on refueling trips. Results for an idealized metropolitan area and Orlando, Florida show that path-based refueling substantially reduces wasteful travel time for refueling and covers more demand feasibly and more equitably in most scenarios. Path-based models incorporate the fact that residents of a zone regularly interact with other zones; therefore, individual stations can cover flows originating both near and far from their locations. This study suggests that path-based approaches to planning hydrogen refueling infrastructure enable more people in more neighborhoods to refuel fuel-cell vehicles without wasting excessive time or running out of fuel.  相似文献   

3.
Establishing hydrogen refueling stations is key to transition into a hydrogen economy. To achieve this, a near-term, city-level roll-out plan is required, as Japan is shifting from the demonstration to implementation stage of a hydrogen economy. The aim of this study was to devise a plan to identify near-term locations to build hydrogen refueling stations in Yokohama City, Japan. Our plan provides information on the potential location of hydrogen refueling stations for 2020–2030. We considered mobile and parallel-siting type refueling stations; the locations of these stations were determined by matching the supply and demand estimated from hybrid vehicle ownership data and the available space in existing gas stations based on a safety perspective. The results reaffirmed the importance of planning the locations of hydrogen refueling stations and highlighted the suitability of using mobile-type stations. This was based on the uncertainty in fuel demand for fuel cell vehicles during the implementation stage of the hydrogen economy.  相似文献   

4.
Fuel cell electric vehicles (FCEVs) have now entered the market as zero-emission vehicles. Original equipment manufacturers such as Toyota, Honda, and Hyundai have released commercial cars in parallel with efforts focusing on the development of hydrogen refueling infrastructure to support new FCEV fleets. Persistent challenges for FCEVs include high initial vehicle cost and the availability of hydrogen stations to support FCEV fleets. This study sheds light on the factors that drive manufacturing competitiveness of the principal systems in hydrogen refueling stations, including compressors, storage tanks, precoolers, and dispensers. To explore major cost drivers and investigate possible cost reduction areas, bottom-up manufacturing cost models were developed for these systems. Results from these manufacturing cost models show there is substantial room for cost reductions through economies of scale, as fixed costs can be spread over more units. Results also show that purchasing larger quantities of commodity and purchased parts can drive significant cost reductions. Intuitively, these cost reductions will be reflected in lower hydrogen fuel prices. A simple cost analysis shows there is some room for cost reduction in the manufacturing cost of the hydrogen refueling station systems, which could reach 35% or more when achieving production rates of more than 100 units per year. We estimated the potential cost reduction in hydrogen compression, storage and dispensing as a result of capital cost reduction to reach 5% or more when hydrogen refueling station systems are produced at scale.  相似文献   

5.
Infrastructure for fuel-cell and other alternative-fuel vehicles is lacking not only in the paucity of fuel stations, but also in inadequate web-based support to help drivers complete their trips via the few stations that do exist. In this paper, we present an online mapping tool for finding the shortest feasible path in a road network given the vehicle's driving range and station locations. Users input their origin, destination, type of fuel, and driving range, and the algorithm generates a new reduced feasible network in which the vertices are the origin and destination nodes and reachable fuel stations and the edges represent feasible paths between them. Dijkstra's shortest path algorithm is applied to this reduced network to find the shortest feasible path. Efficiency is substantially improved by preprocessing and storing the shortest-path distances between stations. We present a web-mapping prototype (www.afvrouting.com) for hydrogen and compressed natural gas stations in the United States. Sample results illustrate the need for this kind of globally optimal solution method by showing that the optimal feasible path and refueling stops can vary tremendously as a result of user inputs for driving range, initial tank level, and one-way or round-trip.  相似文献   

6.
During the first decades of the 20th century, a variety of gasoline refueling methods supported early US gasoline vehicles and successfully alleviated consumer concerns over refueling availability. The refueling methods employed included cans, barrels, home refueling outfits, parking garage refueling facilities, mobile stations, hand carts and curb pumps. Only after robust markets for gasoline vehicles had been firmly established did the gasoline service station become the dominant refueling method. The present study reviews this history and draws analogies with current and future efforts to introduce hydrogen as a fuel for vehicles. These comparisons hold no predictive power; however, there is heuristic value in an historical review of the first successful and large-scale introduction of a vehicle fuel. From an energy policy perspective, these comparisons reinforce the importance of a long-term and portfolio approach to support for technology development and innovation.  相似文献   

7.
Fuel cell vehicles using green hydrogen as fuel can contribute to the mitigation of climate change. The increasing utilization of those vehicles creates the need for cost efficient hydrogen refueling stations. This study investigates how to build the most cost efficient refueling stations to fuel small fleet sizes of 2, 4, 8, 16 and 32 fuel cell busses. A detailed physical model of a hydrogen refueling station was built to determine the necessary hydrogen storage size as well as energy demand for compression and precooling of hydrogen. These results are used to determine the refueling costs for different station configurations that vary the number of storage banks, their volume and compressor capacity.It was found that increasing the number of storage banks will decrease the necessary total station storage volume as well as energy demand for compression and precooling. However, the benefit of adding storage banks decreases with each additional bank. Hence the cost for piping and instrumentation to add banks starts to outweigh the benefits when too many banks are used. Investigating the influence of the compressor mass flow found that when fueling fleets of 2 or 4 busses the lowest cost can be reached by using a compressor with the minimal mass flow necessary to refill all storage banks within 24 h. For fleets of 8, 16 and 32 busses, using the compressor with the maximum investigated mass flow of 54 kg/h leads to the lowest costs.  相似文献   

8.
Hydrogen fuel cell vehicles are currently facing two difficulties in achieving their general use: the lack of hydrogen refueling stations and high hydrogen prices. Hydrogen refueling stations are the middle stage for delivering hydrogen from its sources to consumers, and their location could be affected by the distributed locations of hydrogen sources and consumers. The reasonable siting and sizing of hydrogen refueling stations could both improve the hydrogen infrastructure and reduce regional consumers' cost of using hydrogen. By considering the hydrogen life cycle cost and using a commercial volume forecasting model, this paper creates a relatively thorough and comprehensive model for hydrogen station siting and sizing with the objective of achieving the optimal costs for consumers using hydrogen. The cost‐based model includes the selection of the hydrogen sources, transportation methods, and storage methods, and thus, the hydrogen supply chain can also be optimized. A numerical example is established in Section 4 with the solution algorithm and results.  相似文献   

9.
The layout of electric vehicles charging stations and hydrogen refueling stations (HRSs) is more and more necessary with the development of electric vehicles (EVs) and progress in hydrogen energy storage technology. Due to the high costs of HRSs and the low demand for hydrogen, it is difficult for independent HRSs to make a profit. This study focuses on the dynamic planning of energy supply stations on highways in the medium and long term, considering the growth of EV charging demand and the change in the proportion of hydrogen fuel cell vehicles (HFCVs). Based on the perspective of renewable energy generators (REGs), this study seeks the dynamic optimal configuration and comprehensive benefits of adding HRS and battery to existing EVCS considering the travel rules of new energy vehicles (NEVs). The results show that (1) It is profitable for REGs to invest in HRSs; (2) The economy of investment in batteries by REGs depends on the source-load matching. It is feasible only when the output of renewable energy is difficult to meet the demand. (3) The business model of REGs producing hydrogen on-site and supplying both electricity and hydrogen is feasible.  相似文献   

10.
The adoption of liquefied petroleum gas vehicles is strongly linked to the break-even distance at which they have the same costs as conventional cars, with very limited market penetration at break-even distances above 40,000 km. Hydrogen vehicles are predicted to have costs by 2030 that should give them a break-even distance of less than this critical level. It will be necessary to ensure that there are sufficient refuelling stations for hydrogen to be a convenient choice for drivers. While additional LPG stations have led to increases in vehicle numbers, and increases in vehicles have been followed by greater numbers of refuelling stations, these effects are too small to give self-sustaining growth. Supportive policies for both vehicles and refuelling stations will be required.  相似文献   

11.
Fuel cell vehicles (FCVs) are expected to be commercially available on the world market in 2015, therefore, introducing hydrogen-refueling stations is an urgent issue to be addressed. This paper proposes deployment plan of hydrogen infrastructure for the success of their market penetration in the Northeastern United States. The plan consists of three-timeline stages from 2013 to 2025 and divides the designated region into urban area, suburban area and area adjacent to expressway, so that easy to access to hydrogen stations can be realized. Station is chosen from four types of stations: off-site station, urban-type on-site station, suburban-type on-site station and portable station, associated with growing demand. In addition, on-site station is used as hydrogen production factory for off-site station to save total investment. This deployment plan shows that 83% of urban residents can reach station within 10 min in 2025, and that more than 90% people especially in four major cities: Boston, New York City, Philadelphia, and Washington, D.C. can get to station within 10 min by Geographic Information System (GIS) calculation.  相似文献   

12.
The Republic of Korea government has set yearly targets of hydrogen cars and buses and plans to install hydrogen refueling stations nationwide. This paper proposes a methodology for developing a strategic deployment plan with three mathematical models. For a given target, future refueling demand locations and amount from general road and expressway are systematically estimated. First, the required number of refueling stations to satisfy the target covering ratio of the total demand set by the government is determined by the Station number determination model. Next, the locations of the capacitated stations and the allocation of demand to the stations are determined by the second Max cover and the third p-median models. Since the max covering is more important than minimizing the travel time, the two models are used sequentially. The nationwide hydrogen station deployment plan for the years 2022–2040 obtained by the proposed methodology is reported.  相似文献   

13.
This paper develops an analytical model for determining sufficient density of alternative fuel stations required to achieve a certain level of service. The service level is represented as the probability that the vehicle can make the repeated round trip between randomly selected origin and destination. Distance is measured as the Euclidean distance on a continuous plane. The probability is obtained for regular and random patterns of stations for three cases: fuel is available at both origin and destination, fuel is available at either origin or destination, and fuel is available at neither origin nor destination. The analytical expressions for the probability demonstrate how the density of stations, the vehicle range, and the trip length, as well as the refueling availability at origin and destination affect the service level. The result shows that the effect of the refueling availability at origin and destination is significant.  相似文献   

14.
Zero-emission vehicle (ZEV) adoption is one of the critical solutions to decarbonize the transportation sector. Among the ZEV fleet in the US, battery electric vehicles (BEV) have been leading the market penetration. However, hydrogen fuel cell electric vehicles (FCEV) have also been increasingly adopted in recent years. Although both technologies have challenges with infrastructure, unlike BEVs that have multiple venues for charging (home, work or public), FCEVs rely solely on fueling at public hydrogen stations, and their availability is a significant factor before the vehicle purchase. Therefore, for the success of FCEV adoption, a need to monitor and understand the driver satisfaction of these stations is extremely critical. This research project introduces a quantitative-qualitative approach for continuous monitoring of hydrogen stations based on the station utilization patterns and to assess their preferability based on driver experiences. To illustrate a proof-of-concept, we collected the hourly utilization data of all the hydrogen fueling stations in California for three months. The time-series data was used to develop a capacity-independent term called “Normalized Relative Utilization Index” (NRUI) that encapsulates the utilization pattern of each station to a single metric. We spatially regressed this metric over the number of FCEVs present in the neighborhood to deduce the relationship. We designed a survey to obtain the refueling experiences of FCEV drivers, where about 100 participants responded with their station preferences. Their answers were used to validate the quantitative approach and identify a “Satisfactory Utilization Range” (SUR) of stations which are preferred by most drivers. Though this project illustrates the analysis of data collected over a small period, this approach is easily scalable with new station installations and can be implemented as a continuous monitoring system with real-time station utilization data. We believe this demand-focused approach could complement the existing supply-side monitoring methods on station performance to provide a smoother fueling experience to drivers. We are also releasing the hourly station capacity dataset that was collected as a part of this study to the research community.  相似文献   

15.
Hydrogen infrastructure is expanding. Mobile hydrogen refueling stations are advantageous because they can be moved between locations to provide refueling. However, there are serious concerns over the risk of various accident scenarios as the refueling stations are transported. In this study, we conduct a quantitative risk assessment of a mobile hydrogen refueling station. Risks that may occur at two refueling locations and the transport path between them are analyzed. Our evaluation reveals that risks are mostly in an acceptable zone and to a lesser degree in a conditionally acceptable zone. The greatest single risk factor is an accident resulting from the rupture of the tube trailer at the refueling site. At sites with no tube trailer and during the transport, the risk is greatest from large leaks from the dispenser or compressed gas facility. The mobile hydrogen refueling station can be safely built within acceptable risk levels.  相似文献   

16.
This paper examines the deviation of refueling a hydrogen fuel cell vehicle with limited opportunity provided by the 68 proposed stations in California. A refueling trip is inserted to reported travel patterns in early hydrogen adoption community clusters and the best and worst case insertions are analyzed. Based on these results, the 68 refueling stations provide an average of 2.5 and 9.6 min deviation for the best and the worst cases. These numbers are comparable to currently observed gasoline station deviation, and we conclude that these stations provide sufficient accessibility to residents in the target areas.  相似文献   

17.
Creating a distribution network and establishing refueling stations arises as an important problem in order to meet the refueling needs of hydrogen fuel cell vehicles. In this study, a multi-objective and multi-period hydrogen refueling station location problem that can take into account long-term planning decisions is proposed. Firstly, single objective mathematical models are proposed for the problem by addressing the cost, risk and population convergence objectives. Afterwards, a goal programming model is proposed and the results that will arise when three objectives are taken into consideration at the same time are examined. A risk analysis approach applied for each location alternative is considered in order to handle risk concerns about the hydrogen refueling station settlement. A case study is conducted in Adana, one of the crowded cities in Turkey, to determine the long-term location network plan. Covered population, operational risk and earthquake risks are used as input of the risk analysis method. The case study results show that the goal programming model covers the area with 77 hydrogen refueling stations by different types and capacities during the years from 2020 to 2030. In addition, a computational study is carried out with different alternative scenarios (different number of consumption nodes and all parameters in the model). The computational study results show that the highest deviations from the optimal solution on the model are observed in the distances between consumption nodes and targeted service area parameters which affect about 50% of absolute deviations on average. According to results, the proposed approach selects the station location suitable for the expected changes over the years.  相似文献   

18.
Reliable design and safe operation of heavy-duty hydrogen refueling stations are essential for the successful deployment of heavy-duty fuel cell electric vehicles (FCEVs). Fueling heavy-duty FCEVs is different from light-duty vehicles in terms of the dispensed hydrogen quantities and fueling rates, requiring tailored fueling station design for each vehicle class. In particular, the selection and design of the onboard hydrogen storage tank system and the fueling performance requirements influence the safe design of hydrogen fueling stations. A thermodynamic modeling and analysis are performed to evaluate the impact of various fueling parameters and boundary conditions on the fueling performance of heavy-duty FCEVs. We studied the effect of dispenser pressure ramp rate and precooling temperature, initial tank temperature and pressure, ambient temperature, and onboard storage design parameters, such as onboard storage pipe diameter and length, on the fueling rate and final vehicle state-of-charge, while observing prescribed tank pressure and temperature safety limits. An important finding was the sensitivity of the temporal fueling rate profile and the final tank state of charge to the design factors impacting pressure drop between the dispenser and vehicle tank, including onboard storage pipe diameter selection, and flow coefficients of nozzle, valves, and fittings. The fueling rate profile impacts the design and cost of the hydrogen precooling unit upstream of the dispenser.  相似文献   

19.
This study addresses two topics relevant to the expanding research on how early adopters of hydrogen fuel cell vehicles (FCVs) evaluate stations. First, we assess FCV adopters' access to available stations near home or on the way when they adopted their FCV. Second, we analyze characteristics of geographically convenient stations that drivers did not intend to use (“unlisted stations”) and compare to those they did (“listed stations”). Responses from a web-based survey distributed to FCV adopters in California indicate that nearly half lacked a station within 10 min’ drive of home, while nearly all had one on the way. Drivers did not intend to use nearly half of their geographically convenient stations. Compared to listed stations, unlisted stations are closer to other available ones and commonly only on the way, and several neighborhood-level differences are observed. These findings are important in the context of efforts to expand FCV uptake.  相似文献   

20.
Hydrogen refueling is an essential infrastructure for fuel cell vehicles, and currently, it appears to be a critical service needed to initiate the highly anticipated hydrogen economy in China. A practical selecting procedure of adding hydrogen refueling service to existing natural gas (NG) stations is proposed in this study. A case study in Wuhan, China, is established to assess the feasibility and future planning. The demand for hydrogen fuel and initial supply chain of hydrogen in Wuhan are estimated based on the deployment objective of fuel cell buses. The existing NG stations are evaluated based on 300 kg/day to determine whether they meet the hydrogen safety requirement using Google map or field investigation. The safety space requirement of the hydrogen refueling area on existing NG station is determined as 25.9 × 27.1 m2. The optimal hydrogen refueling plan for fuel cell buses is calculated with multi‐objective analysis in economic, environmental, and safety aspects from the view of the hydrogen refueling supply chain. It is shown that adding hydrogen refueling stations to existing NG stations is feasible in technology, economics, regulation, and operation considerations. This study provides guidelines for building the hydrogen infrastructure for fuel cell buses at their early stage of commercial operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号