首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Generation of hydrogen by hydrolysis of alkali metal hydrides has attracted attention. Unsupported CoB catalyst demonstrated high activity for the catalytic hydrolysis of NaBH4 solution. However, unsupported CoB nanoparticles were easy to aggregate and difficult to reuse. To overcome these drawbacks, CoB/SiO2 was prepared and tested for this reaction. Cobalt (II) acetate precursor was loaded onto the SiO2 support by incipient-wetness impregnation method. After drying at 100 °C, Co cations were deposited on the support. The dried sample was then dispersed in methanol/water solution and then fully reduced by NaBH4 at room temperature. The catalyst was characterized by N2 sorption, XRD and XPS. The results indicated that the CoB on SiO2 possessed amorphous structure. B and Co existed both in elemental and oxidized states. SiO2 not only affected the surface compositions of CoB, but also affected the electronic states of Co and B. B0 could donate partial electron to Co0. The structure effect caused by the SiO2 support helped to prevent CoB nanocluster from aggregation and therefore the activity increased significantly on hydrolysis of alkaline NaBH4 solution. The CoB/SiO2 catalyst showed much higher activity than the unsupported CoB catalyst. At 298 K, the hydrogen generation rate on CoB/SiO2 catalyst was 4 times more than that on the unsupported CoB catalyst. The hydrogen generation rate was as high as 10,586 mL min−1 g−1 catalyst at 298 K. CoB/SiO2 is a very promising catalyst for this reaction.  相似文献   

2.
In this study, the Ni-based complex catalyst containing nickel of 1% supported on Al2O3 is used as for the hydrogen production from NaBH4 hydrolysis. The maximum hydrogen production rate from hydrolysis of NaBH4 with Ni-based complex catalyst supported on Al2O3 containing nickel of 1% is 62535 ml min?1 g?1 (complex catalyst containing 1 wt% Ni). The resulting complex catalyst is characterised by XRD, XPS, SEM, FT-IR, UV, and BET surface area analyses. The Arrhenius activation energy is found to be 27.29 kJ mol?1 for the nickel-based complex catalyst supported on Al2O3. The reusability of the catalyst used in this study has also been investigated. The Ni-based complex catalyst supported on Al2O3 containing nickel of 1% is maintained the activity of 100% after the fifth use, compared to the first catalytic use. The n value for the reaction rate order of NaBH4 is found to be about 0.33.  相似文献   

3.
Co-B catalysts were prepared by the chemical reduction of CoCl2 with NaBH4 for hydrogen generation from borohydride hydrolysis. The catalytic properties of the Co-B catalysts were found to be sensitive to the preparation conditions including pH of the NaBH4 solution and mixing manner of the precursors. A Co-B catalyst with a very high catalytic activity was obtained through the formation of a colloidal Co(OH)2 intermediate. The ultra-fine particle size of 10 nm accounted for its super activity for hydrogen generation with a maximum rate of 26 L min−1 g−1 at 30 °C. The catalyst also changed the hydrolysis kinetics from zero-order to first-order.  相似文献   

4.
Supported Co catalysts with different supports were prepared for hydrogen generation (HG) from catalytic hydrolysis of alkaline sodium borohydride solution. As a result, we found that a γ-Al2O3 supported Co catalyst was very effective because of its special structure. A maximum HG rate of 220 mL min−1 g−1 catalyst and approximately 100% efficiency at 303 K were achieved using a Co/γ-Al2O3 catalyst containing 9 wt.% Co. The catalyst has quick response and good durability to the hydrolysis of alkaline NaBH4 solution. It is feasible to use this catalyst in hydrogen generators with stabilized NaBH4 solutions to provide on-site hydrogen with desired rate for mobile applications, such as proton exchange membrane fuel cell (PEMFC) systems.  相似文献   

5.
Hydrolysis tests have been performed at a constant temperature of 60 °C over a range of sodium borohydride (2.5–30 wt%) and sodium hydroxide (2.5–30 wt%) concentrations. Catalysts used to initiate the hydrolysis reaction were developed through the metal salt reduction method with sodium borohydride. These catalysts were identified as nickel boride, cobalt boride, and ruthenium with each catalyst having similar morphology. Catalysts were tested in loose, powder form free of binders or substrates. Hydrolysis rate comparisons show that reaction rates decrease linearly with increasing NaBH4 concentrations due to mass transfer limitations. Increasing NaOH concentration has been shown to drive a non-catalyzed intermediate reaction with the rate of the overall reaction hindered by the catalysts’ ability to bind hydrogen to active sites. Maximum hydrogen production rates for the Ni3B, Co3B, and Ru catalysts were found to be 1.3, 6.0, and 18.6 L min−1 gcat−1, respectively.  相似文献   

6.
Solution combustion synthesized (SCS) cobalt oxide (Co3O4) powder has been studied as a catalyst precursor for the hydrolysis of sodium borohydride (NaBH4). Synthesis is completed in less than two minutes and results indicate SCS is capable of reproducibly synthesizing 98.5–99.5% pure Co3O4 nano-foam materials. SCS materials demonstrate an as-synthesized specific surface area of 24 m2 g−1, a crystallite size of 15.5 nm, and fine surface structures on the order of 4 nm. Despite having similar initial surface areas and sample purities, SCS-Co3O4 outperforms commercially available Co3O4 and elemental cobalt (Co) nano powders when used as a catalyst precursor for NaBH4 hydrolysis. Hydrogen generation rates (HGR) using 0.6 wt% NaBH4 in aqueous solution at 20 °C were observed to be 1.24 ± 0.2 L min−1 gcat−1 for SCS nano-foam Co3O4 compared to 0.90 ± 0.09 and 0.43 ± 0.04 L min−1 gcat−1 for commercially available Co3O4 and Co, respectively. The high catalytic activity of SCS-Co3O4 is attributed to its nano-foam morphology and crystallinity. During the hydrolysis of NaBH4, the SCS-Co3O4 converts in-situ to an amorphous active catalyst with a specific surface area of 92 m2 g−1 and exhibits a honeycomb type morphology.  相似文献   

7.
The catalyst with high activity and durability plays a crucial role in the hydrogen generation systems for the portable fuel cell generators. In the present study, a ruthenium supported on graphite catalyst (Ru/G) for hydrogen generation from sodium borohydride (NaBH4) solution is prepared by a modified impregnation method. This is done by surface pretreatment with NH2 functionalization via silanization, followed by adsorption of Ru (III) ion onto the surface, and then reduced by a reducing agent. The obtained catalyst is characterized by transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). Very uniform Ru nanoparticles with sizes of about 10 nm are chemically bonded on the graphite surface. The hydrolysis kinetics measurements show that the concentrations of NaBH4 and NaOH all exert considerable influence on the catalytic activity of Ru/G catalyst towards the hydrolysis reaction of NaBH4. A hydrogen generation rate of 32.3 L min−1 g−1 (Ru) in a 10 wt.% NaBH4 + 5 wt.% NaOH solution has been achieved, which is comparable to other noble catalysts that have been reported.  相似文献   

8.
The purpose of this study were to prepare the novel supported bimetallic cobalt-nickel catalysts on the core-shell magnetic nanocomposite of activated carbon derived from wood by sequential and co-deposition-precipitation. The performance of the prepared catalyst was evaluated for the hydrogen generation from hydrolysis of sodium borohydride. The magnetic catalysts were characterized by applying the XRD, XPS, FTIR, FESEM, TEM, ICP, BET and VSM tests. The hydrogen generation rate was increased with the reduction of calcination temperature. The well dispersed magnetic nanoparticles were fabricated with average size below of 30 nm which was confirmed by TEM, FESEM and XRD results. The activity of the prepared samples with respect to the preparation method was illustrated to follow a specific order: Co/Ni/MWAC > Ni/Co/MWAC > Co–Ni/MWAC. The developed model derived from design of experiments could correlate the operating parameters with the experimental data while the correlation coefficient was achieved to be 0.99. The hydrogen generation rate was increased with increasing the reaction temperature and the concentration of sodium borohydride in the alkaline solutions. The hydrogen generation rate was measured to be 740.70 ml min−1. gcat−1 in the presence of the Co/Ni/MWAC at 30 °C. The experimental study also indicated that the hydrolysis of sodium borohydride was a zero order type reaction and the activation energy was calculated 40.70 kJ mol−1. The stability of the prepared sample was also investigated for six cycles which showed the acceptable performance of the synthesized catalyst for the practical applications.  相似文献   

9.
In this study, the hydrogen feed from both Ru-catalyzed and organic acid-catalyzed hydrolysis of NaBH4 was studied in terms of hydrogen generation rate and integrated PEMFC performance. Hydrogen feed generated from the conventional Ru-catalyzed hydrolysis of NaBH4 caused a drastic loss of PEMFC performance. It was found that the presence of sodium ion in hydrogen feed was a main factor that increased the interfacial resistance of fuel cell and, consequently, reduced the performance. Acid-catalyzed hydrolysis with powder form of NaBH4 was adopted in order to minimize the detrimental effect of sodium ion. The hydrogen feed from acid-catalyzed hydrolysis was quite dry so that even water vapor, the carrier of sodium ion, was not detected after condensation of hydrogen feed. It was confirmed by the several experiments that the hydrogen release rate can be controlled by varying the injection rate and concentration of aqueous acid. Various organic acids were employed in the production of hydrogen and found that acidity, acid type and chemical structure are also important factors on hydrolysis of NaBH4. The performance from the integrated acid-catalyzed hydrogen generation system with PEMFC was quite stable and no significant loss was observed contrary to that from the integrated Ru-catalyzed hydrogen generation system–PEMFC test. This result also clarified that the detrimental effect of sodium ion could be removed by minimizing the water vapor in this manner. Based on the experiment of acid-catalyzed hydrolysis, a small-scale hydrogen-generating device was designed and fabricated, from which hydrogen release was controlled by the acid concentration and injection rate of aqueous acid solution.  相似文献   

10.
Hydrogen is a promising energy carrier for realizing the transition from fossil fuels to renewable energy sources. Nowadays, the development of the hydrogen economy faces many challenges connected with its efficient production, storage, distribution, and end-use. During the past decade, the alcoholysis, particularly methanolysis, of sodium borohydride (NaBH4) has attracted much attention due to the nonflammability, nontoxicity, potential for utilization in cold conditions of the reaction system. Highly efficient catalysts are of great significance to guarantee the efficiency of the reaction and control the hydrogen release. In this review, we summarize recent advances in both metallic and nonmetallic catalysts for the alcoholysis of NaBH4. This review also summarizes the advantages and disadvantages of various catalysts in the investigations to assess the potential opportunities and challenges for their application in NaBH4 methanolysis. The catalytic mechanisms related to NaBH4 methanolysis were also discussed.  相似文献   

11.
In this study, it is aimed to investigate hydrogen (H2) generation from sodium borohydride (NaBH4) hydrolysis by multi-walled carbon nanotube supported platinum catalyst (Pt/MWCNT) under various conditions (0–0.03 g Pt amount catalyst, 2.58–5.03 wt % NaBH4, and 27–67 °C) in detail. For comparison, carbon supported platinum (Pt/C) commercial catalyst was used for H2 generation experiments under the same conditions. The reaction rate of the experiments was described by a power law model which depends on the temperature of the reaction and concentrations of NaBH4. Kinetic studies of both Pt/MWCNT and Pt/C catalysts were done and activation energies, which is the required minimum energy to overcome the energy barrier, were found as 27 kJ/mol and 36 kJ/mol, respectively. Pt/MWCNT catalyst is accelerated the reaction less than Pt/C catalyst while Pt/MWCNT is more efficient than Pt/C catalyst, they are approximately 98% and 95%, respectively. According to the results of experiments and the kinetic study, the reaction system based on NaBH4 in the presence of Pt/MWCNT catalyst can be a potential hydrogen generation system for portable applications of proton exchange membrane fuel cell (PEMFC).  相似文献   

12.
The catalytic hydrolysis of alkaline sodium borohydride (NaBH4) solution was studied using a non-noble; nickel-based powered catalyst exhibiting strong activity even after long time storage. This easy-to-prepare catalyst showed an enhanced activity after being recovered from previous use. The effects of temperature, NaBH4 concentration, NaOH concentration and pressure on the hydrogen generation rate were investigated. Particular importance has the effect of pressure, since the maximum reached pressure of hydrogen is always substantially lower than predictions (considering 100% conversion) due to solubility effects. The solubility of hydrogen is greatly enhanced by the rising pressure during reaction, leading to storage of hydrogen in the liquid phase. This effect can induce new ways of using this type of catalyst and reactor for the construction of hydrogen generators and even containers for portable and in situ applications.  相似文献   

13.
Carbon aerogels (CAs) with oxygen-rich functional groups and high surface area are synthesized by hydrothermal treatment of glucose in the presence of boric acid, and are used as the support for loading cobalt catalysts (CAs/Co). Cobalt nanoparticles distribute uniformly on the surface of ACs, creating highly dispersed catalytic active sites for hydrolysis of alkaline sodium borohydride solution. A rapid hydrogen generation rate of 11.22 L min−1 g(cobalt)−1 is achieved at 25 °C by hydrolysis of 1 wt% NaBH4 solution containing 10 wt% NaOH and 20 mg the CAs/Co catalyst with a cobalt loading of 18.71 wt%. Furthermore, various influences are systematically investigated to reveal the hydrolysis kinetics characteristics. The activation energy is found to be 38.4 kJ mol−1. Furthermore, the CAs/Co catalyst can be reusable and its activity almost remains unchanged after recycling, indicating its promising applications in fuel cell.  相似文献   

14.
Hydrogen production from alkaline sodium borohydride (NaBH4) solution via hydrolysis process over activated carbon supported cobalt catalysts is studied. Activated carbons are used in their original form and after liquid phase oxidation with HNO3. The changes in surface functional groups of the activated carbon are detected by FTIR spectroscopy. The effects of HNO3 oxidation on the properties of the activated carbon and the resulting catalyst performance are investigated. FTIR analysis reveals that the oxidative treatment leads to the formation of various functional groups on the surface of the activated carbon. Cobalt catalysts supported on the modified activated carbon are found to exhibit higher activity and stability.  相似文献   

15.
Herein we report for the first time the preparation and catalytic use of the ceria supported manganese(0) nanoparticles in hydrogen generation from the hydrolysis of sodium borohydride. They are in situ formed from the reduction of manganese(II) ions on the surface of ceria nanopowders during the catalytic hydrolysis of sodium borohydride in aqueous solution at room temperature. Manganese(0) nanoparticles are isolated from the reaction solution by centrifugation and characterized by a combination of analytical techniques. Nanoceria supported manganese(0) nanoparticles are highly active and long-lived catalysts providing a turnover frequency of 417 h?1 and 45,000 turnovers in hydrogen generation from the hydrolysis of sodium borohydride at 25.0 ± 0.1 °C. They also have high durability as they retain 55% of their initial catalytic activity after the fifth cycle of hydrolysis providing a release of 4 equivalent H2 gas per mol of sodium borohydride. The noticeable activity loss in successive runs of hydrolysis is attributed to the deactivation due to agglomeration. High activity and stability of ceria supported manganese(0) nanoparticles are ascribed to the unique nature of reducible cerium oxide. The formation of cerium(III) defects under catalytic conditions provides strong binding for the manganese(0) nanoparticles to oxide surface which makes the catalytic activity and stability favorable. Our report also includes the results of kinetic study of catalytic hydrolysis of sodium borohydride depending on the temperature, catalyst and substrate concentration.  相似文献   

16.
This paper reports on the use of Co supported catalyst for the hydrolysis of NaBH4. Various materials with different acid/base surface properties have been chosen as supports (hydrotalcites, KF/Al2O3, heteropolyanions). The supports and the Co-containing catalysts were characterized by X-ray diffraction, scanning electron microscopy with energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, inductively coupled plasma, nitrogen adsorption. The NaBH4 hydrolysis reaction was studied in a liquid phase calorimeter coupled with a gas counter in order to follow at the same time the kinetics and the heat of reaction. Co supported on heteropolyanions showed great results in terms of reaction rate. Cobalt dispersed on heteropolyanions is a real promising catalytic system for the development of hydrogen generation in PEM fuel cells for portable devices.  相似文献   

17.
In this article, we report Co-Co2B and Ni-Ni3B nanocomposites as catalyst for hydrogen generation from alkaline sodium borohydride. Kinetic studies of the hydrolysis of sodium borohydride with Co-Co2B and Ni-Ni3B nanocomposites reveal that the concentration of NaBH4 has no effect on the rate of hydrogen generation. Hydrolysis was found to be first order with respect to the concentration of catalyst. The catalytic activity of Co-Co2B was found to be much higher than that of Ni-Ni3B as inferred from the activation energies 35.245 KJ/mol and 55.810 kJ/mol, respectively. Co-Co2B nanocomposites were found to be more magnetic than Ni-Ni3B. These catalysts showed superior recyclability with almost the similar catalytic activities for several hydrolytic cycles supporting the principles of sustainability. Co-Co2B catalyst showed hydrogen generation rate of about 4300 mL/min/g which is comparable to most of the reported good catalysts till date.  相似文献   

18.
In this study, bimetallic and trimetallic catalysts with different contents on ceramic foam support were prepared in an integrated continuous system and performances of catalysts were investigated using a fixed bed reactor. Bimetallic copper-cobalt, lithium-cobalt, and platinum and palladium added bimetallic (trimetallic) catalysts were prepared and characterized by SEM for morphological structure analysis, BET for surface area measurements, and XRD and XPS for crystal structure analysis. In the hydrogen production tests carried out at different flow rates and temperatures, Pd included trimetallic catalysts performed slightly better than Pt added bimetallic catalysts. Although Pd catalysts have low activity than Pt catalysts according to literature, Pd catalyst prepared on ceramic foam had higher activity. In this work, PdLiCo and PdCuCo catalysts demonstrated highest hydrogen production rates (respectively 4.76 ml/min and 4.69 ml/min) as well as highest specific surface area (7.301 m2/g for PdLiCo, 11.821 m2/g for PdCuCo).  相似文献   

19.
In this article the feasibility of the reaction of liquid water with a solid NaBH4/catalyst mixture for improved hydrogen storage capacity and on-demand H2 generation is reported. The synthesized low-cost nanosized catalyst consists of a Co2B core surrounded by an oxide layer, presenting a relatively large specific surface area (70 m2 g−1). Calorimetric experiments coupled to simultaneous measurements of the evolved hydrogen volume have shown the positive effect of the locally heat release during reduction of the superficial oxidized layer. The synergetic effects of the exothermicity of both the oxidized layer reduction and the hydrolysis reaction coupled to the high efficiency of the cobalt boride catalyst led to an “enhanced regime” observed at room temperature. The “enhanced regime” corresponds to a global reaction stoichiometry of 1 mol of NaBH4 reacting with 3 mol of water, conducting to a hydrogen yield of 8.7 wt.%. Effects of temperature and catalyst content were studied.  相似文献   

20.
The effect of cobalt-based catalysts, i.e. CoCl2(20 wt% Co)/Al2O3 treated by different acids, on NaBH4 hydrolysis was investigated. Five acids were used: oxalic acid, citric acid, acetic acid, sulfuric acid and hydrochloric acid. Two ways of acid treatment were considered: (i) ex-situ addition of acid to CoCl2(20 wt% Co)/Al2O3 at room temperature and (ii) in-situ addition by mixing CoCl2, Al2O3 and acid (one-step process). Both ways showed that adding an acid to the catalyst contributed to an important increase of the catalytic activity towards the NaBH4 hydrolysis. The best performances were obtained with the catalysts treated with either HCl or CH3COOH as the global activity of CoCl2(20 wt% Co)/Al2O3 was increased up to 50%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号