首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An Al/conductive coating/α-PbO2–CeO2–TiO2/β-PbO2–MnO2–WC–ZrO2 composite electrode material was prepared through electrochemical oxidation co-deposition on an Al/conductive coating/α-PbO2–CeO2–TiO2 substrate. The effects of manganese nitrate concentration on the chemical composition, electrocatalytic activity, and stability of the composite anode material were investigated using energy dispersive X-ray spectroscopy, anode polarization curves, quasi-stationary polarization curves, electrochemical impedance spectroscopy, scanning electron microscopy, and X-ray diffraction. Results revealed that the WC and nano-ZrO2 content in the β-PbO2–MnO2–WC–ZrO2 composite coatings increased with increasing manganese nitrate concentration. Moreover, the highest values of 6.61 wt% and 3.51 wt%, respectively, were achieved at 80 g L−1 manganese nitrate. PbO2 content decreased and MnO2 content increased with the increasing manganese nitrate concentration; both the descending and ascending trends were nonlinear. The Al/conductive coating/α-PbO2–CeO2–TiO2/β-PbO2–MnO2–WC–ZrO2 composite electrode obtained at 80 g L−1 manganese nitrate concentration in plating solution exhibited reduced overpotential for oxygen evolution (0.610 V at 500 A m−2), highest electrocatalytic activity, longest service life (360 h at 40 °C in 150 g L−1 H2SO4 solution at 2 A cm−2), and lowest cell voltage (2.75 V at 500 A m−2). Furthermore, the composite coating obtained with 80 g L−1 manganese nitrate had uniform crystal grains. The deposit formed was flat, dense, and crackless.  相似文献   

2.
PdCu membranes prepared by sequential electroless plating were integrated into a hydrogen production and purification process. Hydrogen was produced from methane through catalytic partial oxidation and wet catalytic partial oxidation with Ni-based catalysts. Membrane permeance was measured with thermal cycles in an inert and hydrogen atmosphere at 673 and 773 K. Permeability was 1.98·10−3 mol/(smPa0.5) at 673 K and 2.62·10−3 mol/(smPa0.5) at 773 K. The optimum sweep gas flow required in the membrane module when operating with hydrogen-containing mixtures was selected. Peak hydrogen recovery was obtained using 15–20% of the feed to the module as sweep gas flow. Membranes were then placed downstream of the hydrogen production reactor. The CO and H2O percentages fed to the membrane module did not have a major impact on membrane behavior. Around 60–67% of the hydrogen fed to the membrane module was separated, regardless of its composition.  相似文献   

3.
Ternary Sn–Sb–Co alloy film was successfully prepared by the co-electroplating method using an aqueous solution bath containing SnCl2·2H2O, CoCl2, SbCl3, Na2C4H4O6·2H2O, K3C6H5O7·H2O, and gelatine. The alloy composition was found to be mainly controllable by the amount of Na2C4H4O6·2H2O and SbCl3 in the plating bath. The Sn–Sb–Co film electrode with a composition of 75.4% Sn, 6.5% Sb, and 18.1% Co gave an initial discharge capacity of 380 mAh g−1. The capacity gradually increased from the 1st to the 10th cycle and was then stabilized at a larger value of 580 mAh g−1. Furthermore, the electrode was found to give better cycle performance compared to binary Sn–Co and Sn–Sb alloys.  相似文献   

4.
The supported amorphous alloy catalysts Ni–Co–P/γ-Al2O3 were synthesized by electroless plating for hydrogen generation from catalytic hydrolysis of sodium borohydride solution. The influences of deposition time, pH, NaBH4 concentration and the Co/Ni atomic ratio on the hydrogen generation rate were investigated in this paper. The reported work also includes the full experimental details for the collection of a wealth of kinetic data to determine the activation energy (Ea = 52.05 kJ mol−1). Energy dispersive X-ray spectrometer (EDS), field emission scanning electron Microscope (SEM), inductively coupled plasma-atomic emission spectrometer (ICP-AES) and X-ray diffraction (XRD), nitrogen adsorption–desorption isotherm were used to characterize surface element composition, morphology and structure of the amorphous alloy.  相似文献   

5.
In this work, H2 production via catalytic water gas shift reaction in a composite Pd membrane reactor prepared by the ELP “pore-plating” method has been carried out. A completely dense membrane with a Pd thickness of about 10.2 μm over oxidized porous stainless steel support has been prepared. Firstly, permeation measurements with pure gases (H2 and N2) and mixtures (H2 with N2, CO or CO2) at four different temperatures (ranging from 350 to 450 °C) and trans-membrane pressure differences up to 2.5 bar have been carried out. The hydrogen permeance when feeding pure hydrogen is within the range 2.68–3.96·10−4 mol m−2 s−1 Pa−0.5, while it decreases until 0.66–1.35·10−4 mol m−2 s−1 Pa−0.5 for gas mixtures. Furthermore, the membrane has been also tested in a WGS membrane reactor packed with a commercial oxide Fe–Cr catalyst by using a typical methane reformer outlet (dry basis: 70%H2–18%CO–12%CO2) and a stoichiometric H2O/CO ratio. The performance of the reactor was evaluated in terms of CO conversion at different temperatures (ranging from 350 °C to 400 °C) and trans-membrane pressures (from 2.0 to 3.0 bar), at fixed gas hourly space velocity (GHSV) of 5000 h−1. At these conditions, the membrane maintained its integrity and the membrane reactor was able to achieve up to the 59% of CO conversion as compared with 32% of CO conversion reached with conventional packed-bed reactor at the same operating conditions.  相似文献   

6.
The quantitative relationship between sulfate reducing bacteria (SRB) and hydrogen (H2) production from sulfate (SO42−) and ferrous [Fe(II)] enriched wastewater was investigated. Both Fe(II) (0–11,600 mg/L) and SO42− (0–20,000 mg/L) improved the H2 production efficiency from wastewater. The H2 yields were increased up to 1.9 mol H2/mol glucose in 580–1750 mg Fe(II)/L and 1000–3000 mg SO42−/L enriched wastewater at pH 5.8–6.2. Quantitative Fluorescence In Situ Hybridization (FISH) analyses revealed that the specific sulfate reducing activities (SSRA) were increased from 0.08 and 0.06 to 0.16 and 0.21 g TS/g SRB h in response to variations in sulfate concentration from 300–20,000 mg/L at pH 5.8 and 6.2, respectively. H2 production was not influenced by low SSRA (≤0.1 g TS/g SRB h), which was independent of pH variation. The results demonstrated that the SSRA and Fe(II) concentration can significantly influence on the biological H2 production from SO42− and Fe(II) containing wastewater.  相似文献   

7.
Preparation of 3–5 μm thick, hydrogen-selective PdAu layers via sequential electroless plating of Pd and Au onto ceramic microfiltration membranes was investigated employing a cyanide-free Au plating bath. The Au deposition rate was strongly dependent on bath temperature and alkalinity reaching an optimum at 333 K and pH 10. Homogenous alloying of the separate metal layers under atmospheric H2 proved to be a protracted process and required approximately a week at 873 K for a PdAu layer as thin as 3 μm. After 300 h annealing at 823 K the 5 μm thick PdAu layer of a composite membrane still exhibited a Au gradient declining from 7.4 at.% at the top surface to 5.5 at.% at the support interface despite that the H2 permeation rate had become stable. Nonetheless, the membrane exhibited a very high H2 permeability of e.g. 1.3 × 10−8 mol m m−2 s−1 Pa−0.5 at 673 K, but it decreased much faster with temperature below 573 K than above, likely due to a change from bulk H diffusion-controlled to H2 adsorption or desorption-limited transport. The composite membrane withstood cycling between 523 and 723 K in H2 well showing that differing thermal expansion of the joined metallic and ceramic materials stayed within the tolerance range up to 723 K.  相似文献   

8.
Efficient H2 producing bacterial strain Thermoanaerobacterium thermosaccharolyticum IIT BT-ST1 was isolated from the anaerobic digester. Taguchi design of experiment was applied to evaluate the influence of the temperature, pH, glucose, FeSO4 and yeast extract on H2 production with three levels of orthogonal array in the experimental design. Temperature showed most significant influence on the H2 production process. Investigation of mutual interaction between the process parameters was studied employing Box–Behnken design. Experimentally optimized process parameters (60 °C, pH 6.5, 20 mM FeSO4, 4 g L−1 yeast extract and 12 g L−1 glucose) gave the maximum H2 production of 3930 mL L−1 in 24 h, which have close resemblance with the theoretical values. Continuous H2 production using packed bed reactor was studied. Maximum H2 production rate of 1691 mL L−1 h−1 at a dilution rate of 0.6 h−1 was observed which is about 10 times higher than the batch process.  相似文献   

9.
A novel strategy for the preparation of supported PdAu alloy layers allows the facile and fast fabrication of highly permeable and selective H2 separation membranes from refractory metals via electroless plating and low-temperature alloying. Homogenous alloying of multiple, separately deposited Pd and Au layers with thickness in the nm range required less than one week at 773 K under atmospheric H2 as evidenced by X-ray diffraction and H2 permeation measurements. The H2 permeation rate JH2 became stable within a day even, reaching 0.62 mol m−2 s−1 at 773 K and ΔPH2 = 100 kPa. The corresponding N2 leak rate remained constant during a 350 h experiment, resulting in an ideal H2/N2 selectivity of 1400 and demonstrating that such membranes tolerate extended operation at that temperature well.  相似文献   

10.
A unique thermophilic fermentative hydrogen-producing strain H53214 was isolated from a deep-sea hydrothermal vent environment, and identified as Caloranaerobacter azorensis based on bacterial 16S rRNA gene analysis. The optimum culture condition for hydrogen production by the bacterium, designated C. azorensis H53214, was investigated by the response surface methodology (RSM). Eight variables including the concentration of NaCl, glucose, yeast, tryptone, FeSO4 and MgSO4, initial pH and incubation temperature were screened based on the Plackett–Burman design. The results showed that initial pH, tryptone and yeast were significant variables, which were further optimized using the steepest ascent method and Box–Behnken design. The optimal culture conditions for hydrogen production were an initial pH of 7.7, 8.3 g L−1 tryptone and 7.9 g L−1 yeast. Under these conditions, the maximum cumulative hydrogen volume, hydrogen yield and maximum H2 production rate were 1.58 L H2 L−1 medium, 1.46 mol H2 mol−1 glucose and 25.7 mmol H2 g−1 cell dry weight (CDW) h−1, respectively. By comparison analysis, strain H53214 was superior to the most thermophilic hydrogen producers because of the high hydrogen production rate. In addition, the isolation of C. azorensis H53214 indicated the deep-sea hydrothermal environment might be a potential source for fermentative hydrogen-producing thermophiles.  相似文献   

11.
In this work, several composite membranes were prepared by Pd electroless plating over modified porous stainless steel tubes (PSS). The influence of different siliceous materials used as intermediate layers was analyzed in their hydrogen permeation properties. The addition of three intermediate siliceous layers over the external surface of PSS (amorphous silica, silicalite-1 and HMS) was employed to reduce both roughness and pore size of the commercial PSS supports. These modifications allow the deposition of a thinner and continuous layer of palladium by electroless plating deposition. The technique used to prepare these silica layers on the porous stainless steel tubes is based on a controlled dip-coating process starting from the precursor gel of each silica material. The composite membranes were characterized by SEM, AFM, XRD and FT-IR. Moreover they were tested in a gas permeation set-up to determine the hydrogen and nitrogen permeability and selectivity. Roughness and porosity of original PSS supports were reduced after the incorporation of all types of silica layers, mainly for silicalite-1. As a consequence, the palladium deposition by electroless plating was clearly influenced by the feature of the intermediate layer incorporated. A defect free thin palladium layer with a thickness of ca. 5 μm over the support modified with silicalite-1 was obtained, showing a permeance of 1.423·10−4 mol m−2 s−1 Pa−0.5 and a complete ideal permselectivity of hydrogen.  相似文献   

12.
Hydrogen (H2) production using mixed anaerobic cultures often suffers severe yield reduction due to the syntrophic association between H2 consumers (methanogens and homoacetogens) and H2 producers (acidogens). The objective of this study was to uncouple the syntrophic association between H2 producers and consumers by optimizing conditions for minimum H2 consumption using a Box–Behnken design approach. The factors investigated in this study include temperature, pH and linoleic acid (LA) concentration. A quadratic response surface model was developed to predict the H2 consumed by mixed anaerobic cultures and the optimum conditions for minimum H2 consumption were 38 °C, pH 5.5 and 2 g L−1 LA. Methanogenesis was inhibited in cultures fed 2 g L−1 LA and maintained at pH 6.0 and 53 °C. In comparison, both methanogenesis and homoacetogenesis were inhibited in cultures fed 1–2 g L−1 LA and maintained at a pH of 4.5 (Fig. 2B and 2E and Table 2 Expt. # 1, 2 and 11). Microbial diversity analysis revealed that LA fed cultures was dominated by spore forming Clostridium sp. in addition to Syntrophus aciditrophus. In comparison, control cultures were dominated by Eubacterium sp., Methanocalculus halotolerans and Methanococcoides alaskense. This study described an approach for regulating H2 consumption in mixed cultures by optimizing process and environmental factors. Understanding the effects of these individual factors and their interaction is important in the full-scale operation of H2 production facilities.  相似文献   

13.
Vinegar fermentation wastewater with different initial COD contents (9.66–48.6 g L−1) were used for hydrogen gas production with simultaneous COD removal by electro-hydrolysis. The applied DC voltage was constant at 4 V. The highest cumulative hydrogen production (3197 ml), hydrogen yield (2766 ml H2 g−1 COD), hydrogen formation rate (799 ml d−1), and percent hydrogen (99.5%) in the gas phase were obtained with the highest initial COD of 48.6 g COD L−1. The highest energy efficiency (48%) was obtained with the lowest COD content of 9.66 g L−1. Hydrogen gas production by water electrolysis was less than 250 ml and wastewater control resulted in less than 25 ml H2 in 96 h. The highest (12%) percent COD removal was obtained with the lowest COD content. Hydrogen gas was produced by reaction of (H+) ions present in raw WW ( pH = 3.0) and protons released from acetic acid with electrons provided by electrical current. Electro-hydrolysis of vinegar wastewater was proven to be an effective method of H2 gas production with some COD removal.  相似文献   

14.
A novel marine hyperthermophile, Thermococcus onnurineus NA1, was found to grow on C1 carbon compounds, such as formate and carbon monoxide (CO), and produce hydrogen (H2). In the present study, the growth and H2 production of NA1 were examined to determine its potential as H2 producer. NA1 showed relatively high specific growth rates, 0.48 h−1 and 0.40 h−1 with CO (20%, v/v) and formate (100 mM), respectively, when cultivated in batch mode in a minimal salt medium fortified with 1.0 g L−1 yeast extract. On the other hand, cell growth in both cases stopped at approximately 6 h and the final cell densities were extremely low at 18.2 and 12.1 mg protein L−1 with CO and formate, respectively. The maximum final cell density could be improved greatly to 36.0 mg protein L−1 by optimizing CO content (50%, v/v) and yeast extract concentration (4.0 g L−1), but it was still very low. During the cell growth, formate and CO were used as energy source rather than carbon source. In the resting cell experiments, NA1 exhibited remarkably high H2 production activities as 385.0 and 207.5 μmol mg protein−1 h−1 for CO and formate, respectively. When formate (100 mM) or CO (100%, v/v) was added repeatedly at 30–35 h intervals, NA1 showed consistent H2 production for 3 cycles with a yield of approximately 1.0 mol H2 mol−1 for both CO and formate. This study suggests that T. onnurineus NA1 has a high H2 production potential from formate or CO but a method for achieving a high cell density culture is needed.  相似文献   

15.
The binary phase diagram NaBO2–H2O at ambient pressure, which defines the different phase equilibria that could be formed between borates, end-products of NaBH4 hydrolysis, has been reviewed. Five different solid borates phases have been identified: NaBO2·4H2O (Na[B(OH)4]·2H2O), NaBO2·2H2O (Na[B(OH)4]), NaBO2·2/3H2O (Na3[B3O4(OH)4]), NaBO2·1/3H2O (Na3[B3O5(OH)2]) and NaBO2 (Na3[B3O6]), and their thermal stabilities have been studied. The boundaries of the different Liquid + Solid equilibria for the temperature range from −10 to 80 °C have been determined, confirming literature data at low temperature (20–50 °C). Moreover the following eutectic transformation, Liq. → Ice + NaBO2·4H2O, occurring at −7 °C, has been determined by DSC. The Liquid–Vapour domain has been studied by ebullioscopy. The invariant transformation Liq.  Vap. + NaBO2·2/3H2O has been estimated at 131.6 °C. This knowledge is paramount in the field of hydrogen storage through NaBH4 hydrolysis, in which borate compounds were obtained as hydrolysis reaction products. As a consequence, the authors propose a comparison with previous NaBO2–H2O binary phase diagrams and its consequence related to hydrogen storage through NaBH4 hydrolysis.  相似文献   

16.
Hydrogen gas production from cheese whey powder (CWP) solution by thermophilic dark fermentation was investigated at 55 °C. Experiments were performed at different initial total sugar concentrations varying between 5.2 and 28.5 g L−1 with a constant initial bacteria concentration of 1 g L−1. The highest cumulative hydrogen evolution (257 mL) was obtained with 20 g L−1 total sugar (substrate) concentration within 360 h while the highest H2 formation rate (2.55 mL h−1) and yield (1.03 mol H2 mol−1 glucose) were obtained at 5.2 and 9.5 g L−1 substrate concentrations, respectively. The specific H2 production rate (SHPR = 4.5 mL h−1 g−1cells) reached the highest level at 20 g L−1 total sugar concentration. Total volatile fatty acid (TVFA) concentration increased with increasing initial total sugar content and reached the highest level (14.15 g L−1) at 28.5 g L−1 initial substrate concentration. The experimental data was correlated with the Gompertz equation and the constants were determined. The optimum initial total sugar concentration was 20 g L−1 above which substrate and product (VFA) inhibitions were observed.  相似文献   

17.
In this study, quaternary cobalt-tungsten-boron-phosphorus porous particles supported on Ni foam (Co-W-B-P/Ni), which are prepared through ultrasonification-assisted electroless deposition route, have been investigated as the catalyst for hydrogen generation (HG) from hydrolysis of ammonia borane (NH3BH3, AB). Compared with Ni-supported binary Co-B and ternary Co-W-B catalysts, the as-synthesized Co-W-B-P/Ni shows a higher HG rate. To optimize the preparation parameters, the molar ratio of NaBH4/NaH2PO2·H2O (B/P) and the concentration of Na2WO4·2H2O (W) have been investigated and the catalyst prepared with B/P value of 1.5 and W concentration of 5 g L−1 shows the highest activity. The results of kinetic studies show that the catalytic hydrolysis of AB is first order with respect to the catalyst and AB concentrations. By using the quaternary catalyst with a concentration of 0.5 wt % AB, a HG rate of 4.0 L min−1 g−1 is achieved at 30 °C. Moreover, the apparent activation energy for the quaternary catalyst is determined to be 29.0 kJ mol−1, which is comparable to that of noble metal-based catalysts. These results indicate that the Co-W-B-P/Ni is a promising low-cost catalyst for on-board hydrogen generation from hydrolysis of borohydride.  相似文献   

18.
Photofermentative H2 production at higher rate is desired to make H2 viable as cheap energy carrier. The process is influenced by C/N composition, pH levels, temperature, light intensity etc. In this study, Rhodobacter sphaeroides strain O.U 001 was used in the annular photobioreactor with working volume 1 L, initial pH of 6.7 ± 0.2, inoculum age 36 h, inoculum volume 10% (v/v), 250 rpm stirring and light intensity of 15 ± 1.1 W m−2. The effect of parameters, i.e. variation in concentration of DL malic acid, L glutamic acid and temperature on the H2 production was noted using three factor three level full factorial designs. Surface and contour plots of the regression models revealed optimum H2 production rate of 7.97 mL H2 L−1 h−1 at 32 °C with 2.012 g L−1 DL malic acid and 0.297 g L−1 L glutamic acid, which showed an excellent correlation (99.36%) with experimental H2 production rate of 7.92 mL H2 L−1 h−1.  相似文献   

19.
This work comprises a study of hydrogen separation with a composite Pd-YSZ-PSS membrane from mixtures of H2, N2, CO and CO2, typical of a water gas shift reactor. The Pd layer is extended over a tubular porous stainless steel support (PSS) with an intermediate layer of yttria-stabilized-zirconia (YSZ). YSZ and Pd layers were incorporated over the PSS using Atmospheric Plasma Spraying and Electroless Plating techniques, respectively. The Pd and YSZ thickness values are 13.8 and 100 μm, respectively, and the Pd layer is fully dense. Permeation measurements with pure, binary and ternary gases at different temperatures (350–450 °C), trans-membrane pressures (0–2.5 bar) and gas composition have been carried out. Moreover, thermal stability of the membrane was also checked by repeating permeation measurements after several cycles of heating and cooling the system. Membrane hydrogen permeances were calculated using Sieverts' law, obtaining values in the range of 4·10−5–4·10−4 mol m−2 s−1 Pa−0.5. The activation energy of the permeance was also calculated using Arrhenius' equation, obtaining a value of 16.4 kJ/mol. In spite of hydrogen selectivity being 100% for all experiments, the hydrogen permeability was affected by the composition of feed gas. Thus, a significant depletion in H2 permeate flux was observed when other gases were in the mixture, especially CO, being also more or less significant depending on gas composition.  相似文献   

20.
Catalytically active, low-cost, and reusable transition metal catalysts are desired to develop on-demand hydrogen generation system for practical onboard applications. By using electroless deposition method, we have prepared the Pd-activated TiO2-supported Co-Ni-P ternary alloy catalyst (Co-Ni-P/Pd-TiO2) that can effectively promote the hydrogen release from ammonia-borane aqueous solution. Co-Ni-P/Pd-TiO2 catalysts are stable enough to be isolated as solid materials and characterized by XRD, SEM, and EDX. They are isolable, redispersible and reusable as an active catalyst in the hydrolysis of AB. The reported work also includes the full experimental details for the collection of a wealth of kinetic data to determine the activation energy (Ea = 54.9 kJ mol−1) and effects of the amount of catalyst, amount of substrate, and temperature on the rate for the catalytic hydrolysis of AB. Maximum H2 generation rate of ∼60 mL H2 min−1 (g catalyst)−1 and ∼400 mL H2 min−1 (g catalyst)−1 was measured by the hydrolysis of AB at 25 °C and 55 °C, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号