首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Steam reforming of toluene (SRT) has been studied initially in eight nickel-based catalysts where nickel (10 wt%) was incorporated in different supports (olivine, Al2O3, MgO, LDH, ZrO2, CeO2 and natural sepiolite) by the incipient wetness impregnation method. Among them, nickel catalyst based on sepiolite exhibited a promising catalytic performance, with a high conversion of toluene (16%), high selectivity to hydrogen (68.4%) and low production of undesired by-products (CO, CH4, ethylene and benzene) at low temperature (500 °C). On the other hand, the incorporation of Ni in the sepiolitic material by precipitation (PP) has been considered as alternative method to the incipient wetness impregnation method (IWI). PP method allowed to prepare a Ni-based catalyst with a very high activity (conversion of toluene ~100%), high selectivity to hydrogen (73%) and lower production of undesirable by-products (5% CO, 2% CH4 and 0% C6H6) at 575 °C. In addition, catalytic deactivation due to coke deposition and nickel sinterization was clearly lower for the catalyst synthesized by PP. Characterization by different physicochemical techniques (XRD, TEM, BET surface area, ICP-OES, TPR and EA) showed that PP method allowed to obtain a sepiolite-based catalyst containing Ni with larger external surface area and smaller, highly dispersed and easily reducible Ni metal particles. The results here discussed show that the Ni incorporation method has a clear influence in the preparation of nickel catalyst supported on sepiolite with improved catalytic performance in the steam reforming of toluene.  相似文献   

4.
Sorption-enhanced steam reforming of ethanol (SE-SRE) with in-situ CO2 removal is an environmentally friendly and sustainable approach for hydrogen production. Researches on continuous production of high-purity H2 by SE-SRE over the modified Li4SiO4 sorbent were conducted using two parallel reactor in this work. The low cost Li4SiO4 derived from rice husk ash (RHA) is a promising high-temperature CO2 sorbent. However, the poor adsorption kinetics of RHA-Li4SiO4 sorbent at low CO2 concentration is the major challenge. The metallic elements (K, Ca, Al, Mg) were employed to modify the RHA-Li4SiO4 for efficient CO2 capture. The developed sorbents were characterized and tested to study the role of dopants on the crystal, textural, microstructure and CO2 adsorption kinetics and cyclic stability. Results indicated that K doping effectively inhibited the growth of crystal aggregation and resulted in a fluffy morphology with abundant pores and higher specific surface area, while the addition of Ca, Al and Mg formed a nubby structure with larger particle size. K-doped RHA-Li4SiO4 exhibited the best CO2 uptake properties and the optimal K doping molar content was 0.02 with the maximum capture capacity of 34.16 wt%, which is higher than 27.1 wt% of pure RHA-Li4SiO4. Then, the effect of operating conditions on the enhancement behaviors was considered in the SE-SRE system. High-purity H2 (above 96%) was achieved by coupling K(0.02)/RHA-Li4SiO4 sorbent with Ni-based catalyst under the optimum condition (T: 525 °C, liquid hourly space velocity: 0.9 mL/(g·h), sorbent/catalyst: 4 and steam/carbon: 8.0). The adsorption activity of K(0.02)/RHA-Li4SiO4 maintained at a high level in ten SE-SRE/regeneration cycles. Finally, a scheme including two parallel fixed-bed reactors was designed and operated periodically for continuous production of high-purity H2. The reaction switching time was shown to depend strongly on the pre-breakthrough time and operating conditions. As the reaction switching time was 40 min, the products were always only H2 and CH4 (no CO and CO2 appear) and the H2 purity remained above 90% during 400 min, confirming high purity hydrogen stream can be obtained continuously.  相似文献   

5.
In the present work, hydrotalcite-like compound precursor for preparing mixed oxide catalyst was successfully synthesized by a novel method, which was a combination of the reverse microemulsion and coprecipitation methods. It was observed that the precursor obtained from the above method possessed superior characteristics for preparing mixed oxide catalyst used in ethanol steam reforming (ESR). Furthermore, for comparison, catalysts prepared from conventional coprecipitation and impregnation methods had been characterized together with the catalyst prepared from the new method. Besides ICP, BET, X-ray diffraction (XRD), temperature-programmed reduction (TPR), H2-TPD, TG, and TEM analytic techniques, catalytic performance for ESR was also investigated. The results of XRD and TPR indicated that a solid solution phase existed in the catalysts obtained from reverse microemulsion and coprecipitation methods, while spinel phase together with solid solution were observed in the catalyst obtained from the impregnation method. The high BET surface area of the catalyst obtained from the reverse microemulsion method enhanced the dispersion and the surface area of nickel, which improved the catalyst performance. From TEM images, the aggregated Ni could be found in the catalyst obtained from the impregnation method, while the hydrotalcite-like compound precursors prepared from reverse microemulsion and coprecipitation methods produced homogeneously distributed active Ni metal species. The catalyst obtained from reverse microemulsion exhibited the best activity, stability, and least carbon deposition because of the formation of hydrotalcite-like compound precursor, uniform dispersion of active Ni metal species, and much more surface area supporting the active Ni metal sites.  相似文献   

6.
The catalytic activity of calcium hydroxyapatite (HAp) supported cobalt nanoparticles in ethanol steam reforming (SRE) was investigated. Co was supported on hydrothermally prepared HAp by incipient wetness impregnation method. Co/HAp catalysts were characterized through XRD, FT-IR and Raman spectroscopy, TEM, SEM/EDS, N2 physisorption, TG and TPR-H2. Results showed that spinel cobalt oxide is reduced to CoO and Co and these species are responsible for catalytic activity for hydrogen production via SRE process. The main reactions over Co/HAp are incomplete steam reforming and dehydrogenation of ethanol. Reforming experiment over pre-reduced sample indicated a negative impact of H2 treatment on hydrogen production. The best catalytic properties (YH2 and CEtOH) were obtained over 5%Co/HAp catalyst.  相似文献   

7.
Hydrocalumite derived catalysts prepared by co-precipitation with non-noble metal Nickel(Ni) as main active site were tested in ethanol steam reforming, and the influences of Ni (5,10,15 wt%) content were mainly tested in this research. Meanwhile, the physicochemical properties of the prepared catalysts were analyzed through different characterizations including BET, X-ray diffraction (XRD), H2-temperature programmed reduction (H2-TPR) and CO2-temperature programmed desorption (TPD). As the Ni increased, the specific surface area, crystallite size of Ni, reducibility and basicity of catalysts were changed, which further affected their activities. On this basis, the best performance in this catalytic system was presented when Ni in the catalysts was 15 wt%, the ethanol conversion and hydrogen yield could reach almost 100% and 85% at 650 °C respectively. Thus, this kind of catalyst is effective for ethanol steam reforming.  相似文献   

8.
Hydrocalumite derived nickel (Ni) catalysts with different loading of magnesium (Mg) (7.5/10/15 wt%, as promoters) were for the first time prepared and tested for ethanol steam reforming (ESR) in this work. The catalytic performances of different Mg promoted catalysts were mainly evaluated in the temperature range between 550 and 700 °C as determined by thermodynamic simulation. Experimental results showed that the optimal reaction temperature was 650 °C in terms of the hydrogen yields for these ESR catalysts, especially for 15Ni7.5Mg/HCa which presented a remarkable catalytic performance. Its hydrogen yields reached 90% while ethanol was almost fully converted at 650 °C. Based on the characterization results, it's believed that 15Ni7.5Mg/HCa with a certain amount of Mg loading can get the smallest Ni0 crystallite sizes, better H2 reducibility and suitable basicities on strong basic sites. The catalytic performances of ESR catalysts were mainly related to the Ni0 crystallite size, reducibility and basicity for the prepared hydrocalumites derived Ni catalysts, and 15Ni7.5Mg/HCa could be considered as one of the best catalysts for ESR.  相似文献   

9.
Novel zeolite-supported rhodium catalysts for ethanol steam reforming   总被引:1,自引:0,他引:1  
Renewable bioethanol is an interesting hydrogen source for fuel cells through steam reforming, but its C–C bond promotes parallel reactions, mainly coke and by-products formation. In this way, good ethanol reforming catalysts are still needed, which explains current research and development efforts around the world. Most catalysts proposed for ethanol reforming are based on oxide-supported noble metals with surface area below 100 m2 g−1 and reaction temperatures above 500 °C. Novel Rh and Rh–K catalysts supported on NaY zeolite with surface area above 440 m2 g−1 are presented in this work. Reaction temperature was fixed at 300 °C and H2O/EtOH molar ratio and reagent flow were varied. Ethanol conversion varied from 50 to 99%, with average increase of 50% due to K promoter, and hydrogen production yield achieved 68%.  相似文献   

10.
Hydrogen is considered one of the most promising energy vectors in order to match the current energy and environmental issues. Bioethanol steam reforming is a sound opportunity and close to the industrialization considering an integrated biorefinery concept. MgAl2O4 was selected as a stable support, with improved activity, selectivity and stability due to negligible acidity. Increasing the Ni loading from 1.5 to 10 wt% over MgAl2O4 improved the conversion of ethanol as well as the yield of hydrogen, while the carbon deposition and yield of byproducts decreased.Small acidity characterised the samples, attributed exclusively to the Ni active phase. This prevented extensive catalyst coking due to ethylene formation and subsequent polymerisation. Consequently, small coke amount was found on the spent catalysts, mainly amorphous, allowing rather easy regeneration.DRIFT analysis of adsorbed ethanol at variable temperature evidenced the intermediates of reaction and their evolution with temperature, allowing to suggest the main reaction paths. Acetaldehyde was found as intermediate, rapidly evolving to reformate. Among the possible evolution paths of acetaldehyde, the oxidation to acetate and carbonate species (likely stabilised by the support) was preferred with respect to decomposition to methane and CO. This is reflected in the products distribution evidenced through activity testing.  相似文献   

11.
Hydrogen production from glycerin by steam reforming over nickel catalysts   总被引:3,自引:0,他引:3  
Increasing biodiesel production has resulted in a glut of glycerin that has led to a precipitous drop in market prices. In this study, the use of glycerin as a biorenewable substrate for hydrogen production, using a steam reforming process, has been evaluated. Production of hydrogen from glycerin is environmentally friendly because it adds value to this byproduct generated from biodiesel plants. The study focuses on nickel-based catalysts with MgO, CeO2, and TiO2 supports. Catalysts were characterized with thermogravimetric analysis and X-ray diffraction techniques. Maximum hydrogen yield was obtained at 650 °C with MgO supported catalysts, which corresponds to 4 mol of H2 out of 7 mol of stoichiometric maximum.  相似文献   

12.
The performance of CeO2-supported Pt–Ni and Pt–Co catalysts in the low temperature-Ethanol Steam Reforming (ESR) reaction has been evaluated studying the effect of the preparation method (impregnation/coprecipitation) and parameters such as dilution ratio, temperature, water-to-ethanol feed ratio and Gas Hourly Space Velocity (GHSV). The results show that impregnated samples perform better. In particular, the Pt/Ni/CeO2 catalyst starting from 350 °C leads to a products distribution very close to the equilibrium calculations, with a low CO content that is ideal for fuel cells devices. In addition, the Co-based catalysts appear attractive in terms of hydrogen yield and coking tendency.  相似文献   

13.
In this study, Pt-promoted Cox/ZrO2 catalysts (including 1.5 wt% Pt and Co loading of 0.75, 1.5, 3.0, 6.0, 9.0, 12, 24 and 48 wt%, respectively) were prepared by the incipient wet impregnation method for hydrogen production by steam reforming of ethanol (SRE). Evaluation of catalytic activities and products distribution toward the SRE reaction were carried out in a fixed-bed reactor with 100 mg of catalyst under an H2O/EtOH molar ratio of 13.0 and gas hourly space velocity (GHSV) of 22,000 h−1. The results revealed that the optimal loading of cobalt could enhance the capacities of catalytic performance and C–C scission, further raised the yield of hydrogen (YH2)(YH2) and lowered the deposited carbon, CH4 and CO side-products due to the combination effect of cobalt and platinum. The Pt1.5Co12/ZrO2 catalyst exhibited superiority in the SRE reaction, where complete conversion of ethanol was achieved at 275 °C. The (YH2)(YH2) approached 4.95, and only minor CO (<2%), CH4 (<4%), and carbon deposition (<0.5%) were detected at 500 °C. In addition, the ethanol conversion still remained complete, and the selectivity of hydrogen exceeded 70% during a 116 h time-on-stream test under the same condition.  相似文献   

14.
Co- and Ce-based structured catalysts deposited on FeCrAlloy monoliths have been prepared. A new two-step strategy for coating the monolith is used: (i) first, a MgAl2O4 spinel layer is generated on the FeCrAlloy substrate, and (ii) then, Co and Ce are incorporated in two different molar ratios by the conventional wet impregnation method. The spinel layer is formed from a solution of colloidal alumina and Mg(NO3)2, with an apparent viscosity of around 3300 mPa s. The results indicate that a homogeneous spinel coating with excellent adherence is obtained after two immersions and a calcination at 700 °C. Both structured catalysts are active in the steam reforming of ethanol at 650 °C. The system with a Co/Ce molar ratio of 3.7 exhibits the best performance with a high stability. A complete ethanol conversion and a hydrogen selectivity of around 95% are obtained in two reaction cycles of 36 h each with intermediate regeneration.  相似文献   

15.
A LaNiO3 perovskite catalyst was prepared using the coprecipitation–oxidation hydrothermal method, followed by calcination at 600 °C for 2 h. The as-prepared sample was composed of La(OH)3 in nanorod structures and was covered with poorly crystalline Ni(OH)2. The mixed metal hydroxides were converted into cubic LaNiO3 perovskite after calcination at 600 °C. A catalytic steam reforming of ethanol (SRE) reaction for hydrogen production was performed in a fixed-bed reactor. The catalyst was reduced in situ in hydrogen at 400 °C prior to the reaction. The ethanol conversion reached 100% at 300 °C with 70% hydrogen selectivity. The highly catalytic activity of the reduced catalyst was due to the well-dispersion of Ni particles on the surface of active catalyst was formed in the in situ reduced catalyst. After a 80 h time-on-stream test at 350 °C, the used catalyst presented a La2O2CO3 component that was formed owing to the reaction of the CO2 product with La2O3. La2O2CO3 acted as a carbon reservoir to eliminate the deposited carbon and further stabilized the Ni particles on the La2O3 surface, which resulted in the highly catalytic activity during the entire reaction period. The deposited carbon after the SRE reaction was further examined by TGA, TPR, elemental analysis, and TEM.  相似文献   

16.
Three Ni-based catalysts, namely Ni/ZrO2/Al2O3, Ni/La-Ca/Al2O3 and Ni0.5Mg2.5AlO9 catalysts were prepared, tested and characterized for steam reforming of methane (SRM), especially at high space velocities. Experimental results demonstrated that Ni0.5Mg2.5AlO9 catalysts showed excellent catalytic activity, e.g., the high reaction performance (i.e., activity and stability) at a very short residence time of 20 ms. For the accompanied water gas shift (WGS) reaction with the SRM at the steam to methane ratio of 3:1, the overall hydrogen yield depended on both the CH4 conversion and the CO2 selectivity. The results showed that CO2 selectivity had opposite trend compared with CH4 conversion in such a short-contact process. Catalyst characterizations by XRD, SEM-EDS, TEM and TGA suggested that the good performance of nickel catalysts was closely related with the good dispersion of the active component. The nano-sized nickel particles in strong interaction with the supports would lead to the good dispersion, thereafter having a slight tendency to sintering, and then to coking.  相似文献   

17.
Various transition metals (M = Pt, Fe, Co, and Ni) were selected to support on molybdenum carbides by in-situ carburization metal-doped molybdenum oxide (M-MoOx) via temperature-programmed reaction (TPR) with a final temperature of 700 °C in a reaction gas mixture of 20% CH4/H2. XRD analysis results indicated that β-Mo2C phase was formed in the case of Fe, Co, or Ni doping while α-Mo2C phase was appeared with the β-MoC1−x phase in the case of Pt doping. With the increase in Pt doping amount, more α-MoC1−x phase was produced. As-prepared metal doped molybdenum carbides were investigated as alternative catalysts for the steam reforming of methanol. Comparing with the undoped molybdenum carbide such as β-Mo2C, metal-doped one showed higher methanol conversion and hydrogen yield. It is found that Pt doped molybdenum carbide had the highest catalytic activity and selectivity among the prepared catalysts and methanol conversion reached 100% even at a temperature as low as 200 °C, and remained a long-time stability with a stable methanol conversion.  相似文献   

18.
Catalytic activity of a ceria-supported Iridium (Ir/CeO2) catalyst was investigated for steam reforming of ethanol within a temperature range of 300–500 °C. Three types of ceria were chosen to prepare the catalyst: commercial [assigned as CeO2(C)] and prepared [using a simple reduction–oxidation method, CeO2(R), and another combined with ultrasonic irradiation, CeO2(U)] ceria. The Ir/CeO2 catalyst with Ir loading of 2 wt.% was prepared by deposition–precipitation using iridium chloride (IrCl3) as a precursor at 75 °C and pH = 9 (adjusted with 0.25 M Na2CO3). Catalytic activities toward the steam reforming of ethanol (SRE) were tested in a fixed-bed reactor. In order to better understand the effect of activation conditions of a catalyst on the reforming of ethanol, reduction pretreatment at 200 and 400 °C (assigned as H2 and H4) were conducted. The results indicated that only less sintering influences the catalytic activities for high temperature reduction. The ethanol conversion approached completion around 450 °C via reduction pretreatment for Ir/CeO2(U) and Ir/CeO2(C) samples under H2O/EtOH molar ratio of 13 and 22,000 h−1 GHSV. Not only was a high dispersion of both catalysts present but also no impurities (e.g., boron) interfered with the catalytic activities. The hydrogen yield (H2 mole/EtOH mole) exceeds 5.0 with less content of CO and CH4 (<2%).  相似文献   

19.
In the present work, a comparative study of Ni catalysts supported on commercially available alumina and lanthana-alumina carriers was undertaken for the glycerol steam reforming reaction (GSR). The supports and/or catalysts were characterized by PZC, BET, ICP, XRD, NH3-TPD, CO2-TPD, TPR and SEM. Carbon deposited on the catalytic surface was characterized by SEM, TPO and Raman. Concerning the Ni/LaAl sample it can be concluded that the presence of lanthana by: (a) facilitating the active species dispersion, (b) strengthening the interactions between nickel species and support, (c) increasing of the basic sites' population and redistributing the acid ones in terms of strength and density, provides a catalyst with improved performance for the GSR reaction, in terms of activity, H2 production and long term stability. TPO and Raman indicate that the carbon on the Ni/LaAl catalyst was mostly amorphous and was deposited mainly on the support surface. For the Ni/Al catalyst, graphitic carbon was prevalent and likely covered its active sites.  相似文献   

20.
Ni-W/Al2O3 catalysts were synthesized, characterized and tested for the steam reforming of ethanol from 300 to 600 °C. Addition of Ni and W on the alumina, decreased the surface area and increased the pore volume of the mesoporous materials synthesized. The reaction products obtained were: H2, CO2, C2H4, CH4, CO2, CO and CH3CHO. A promoting effect of Ni-W was observed in the conversion of ethanol to H2 from 15 to 30 wt.% Ni and 1 wt.% W. The selectivity to H2 on the alumina with Ni-W, was between 66.53 and 68.53% at 550 °C, appearing some undesirable products, with low ratio of CO/CO2. Reaction was studied on a fixed bed reactor at atmospheric pressure with an ethanol/water molar ratio of 1:4, from 300 to 600 °C. The catalysts were characterized by the thermal gravimetric analysis (TGA)-Differential thermal analysis (DTA), N2 physisorption (BET and BJH methods), X-ray diffraction (XRD) and scanning electron microscopy (SEM), these techniques were used for characterization, before and after of the steam reforming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号