首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrogen storage properties and mechanisms of the Ca(BH4)2-added 2LiNH2–MgH2 system were systematically investigated. The results showed that the addition of Ca(BH4)2 pronouncedly improved hydrogen storage properties of the 2LiNH2–MgH2 system. The onset temperature for dehydrogenation of the 2LiNH2–MgH2–0.3Ca(BH4)2 sample is only 80 °C, a ca. 40 °C decline with respect to the pristine sample. Further hydrogenation examination indicated that the dehydrogenated 2LiNH2–MgH2–0.1Ca(BH4)2 sample could absorb ca. 4.7 wt% of hydrogen at 160 °C and 100 atm while only 0.8 wt% of hydrogen was recharged into the dehydrogenated pristine sample under the same conditions. Structural analyses revealed that during ball milling, a metathesis reaction between Ca(BH4)2 and LiNH2 firstly occurred to convert to Ca(NH2)2 and LiBH4, and then, the newly developed LiBH4 reacted with LiNH2 to form Li4(BH4)(NH2)3. Upon heating, the in situ formed Ca(NH2)2 and Li4(BH4)(NH2)3 work together to significantly decrease the operating temperatures for hydrogen storage in the Ca(BH4)2-added 2LiNH2–MgH2 system.  相似文献   

2.
The structure of (NH4)2B10H10 (1) was determined through powder XRD analysis. The thermal decomposition of 1 and (NH4)2B12H12 (2) was examined between 20 and 1000 °C using STMBMS methods. Between 200 and 400 °C a mixture of NH3 and H2 evolves from both compounds; above 400 °C only H2 evolves. The dihydrogen bonding interaction in 1 is much stronger than that in 2. The stronger dihydrogen bond in 1 resulted in a significant reduction by up to 60 °C, but with a corresponding 25% decrease in the yield of H2 in the lower temperature region and a doubling of the yield of NH3. The decomposition of 1 follows a lower temperature exothermic reaction pathway that yields substantially more NH3 than the higher temperature endothermic pathway of 2. Heating of 1 at 250 °C resulted in partial conversion of B10H102− to B12H122−. Both 1 and 2 form an insoluble polymeric material after decomposition. The elements of the reaction network that control the release of H2 from the B10H102− can be altered by conducting the experiment under conditions in which pressures of NH3 and H2 are either near, or away from, their equilibrium values.  相似文献   

3.
Composite NaNH2-NaBH4 (molar ratio of 2/1) hydrogen storage materials are prepared by a ball milling method with various ball milling times. The compositions and hydrogen generation characteristics are investigated by means of X-ray diffraction (XRD) and thermo gravimetric-differential thermal analysis (TG-DTA). The structural characteristics imply that ball milling produces a new phase of Na3(NH2)2BH4, and mechanical energy accumulated in the ball milling process may be responsible for the phase change of Na3(NH2)2BH4. TG-DTA demonstrates that the phase change temperature of the composite NaNH2-NaBH4 (2/1) ball milled for 16 h is 141.8 °C, and the melting point is 197.3 °C; below 400 °C, composite hydrogen storage material is mainly decomposed to give hydrogen and Na3BN2; while above 400 °C, the previous by-product Na3BN2 continues to decompose so as to give metal Na gradually.  相似文献   

4.
Thermal decomposition of (NH4)2SO4 in presence of Mn3O4   总被引:1,自引:0,他引:1  
The main objective of this work is to develop a hybrid water-splitting cycle that employs the photon component of sunlight for production of H2 and its thermal (i.e. IR) component for generating oxygen. In this paper, (NH4)2SO4 thermal decomposition in the presence of Mn3O4, as an oxygen evolving step, was systematically investigated using thermogravimetric/differential thermal analyses (TG/DTA), temperature programmed desorption (TPD) coupled with a mass spectrometer (MS), X-ray Diffraction (XRD), and X-ray Photoelectron Spectroscopy (XPS) techniques. Furthermore, thermolysis of ammonium sulfate, (NH4)2SO4, in the presence of Mn3O4 was also investigated by conducting flow reactor experiments. The experimental results obtained indicate that at 200-450 °C, (NH4)2SO4 decomposes forming NH3 and H2O and sulfur trioxide that in the presence of manganese oxide react to form manganese sulfate, MnSO4. At still higher temperatures (800∼900 °C), MnSO4 further decomposed forming SO2 and O2.  相似文献   

5.
MoO3 nanorods/Fe2(MoO4)3 nanoparticles composite has been prepared by a hydrothermal method combined with an in situ diffusion growth process. Single cells based on 300 μm LSGM electrolyte have been fabricated with the MoO3 nanorods/Fe2(MoO4)3 nanoparticles composite anode and a composite cathode consisting of Sr0.9Ce0.1CoO3−δ and Sm-doped ceria (SDC). The peak power densities reach 225, 50, 75 mW cm−2 at 900 °C in H2, CH4 and C3H8, respectively. The cell shows excellent long-term stability at 850 °C. The preliminary results demonstrate that the MoO3 nanorods/Fe2(MoO4)3 nanoparticles composite is a promising alternative anode for solid oxide fuel cells.  相似文献   

6.
Stepwise reactions were observed in the ball milling and heating process of the LiBH4-NaNH2 system by means of X-ray diffraction (XRD) and Fourier transform infrared spectrometry (FT-IR). During the ball milling process, two concurrent reactions take place in the mixture: 3LiBH4 + 4NaNH2 → Li3Na(NH2)4 + 3NaBH4 and LiBH4 + NaNH2 → LiNH2 + NaBH4. The heating process from 50 °C to 400 °C is mainly the concurrent reactions of Li3Na(NH2)4 + 3LiBH4 → 2Li3BN2 + NaBH4 + 8H2 and 2LiNH2 + LiBH4 → Li3BN2H8 → Li3BN2 + 4H2, where the intermediate phases Li3Na(NH2)4 and LiNH2 serve as the reagents to decompose LiBH4. The merged equations for the mechanochemical and the heating reactions below 400 °C can be denoted as 3LiBH4 + 2NaNH2 → Li3BN2 + 2NaBH4 + 4H2. The maximum dehydrogenation capacity in closed system below 400 °C is 5.1 wt.% H2, which agrees well with the theoretical capacity (5.5 wt.% H2) of the merged equation and thus demonstrates the suggested pathway. The subsequent step consists of the decompositions of NaBH4 and Li3Na(NH2)4 within the temperature range of 400 °C-600 °C. The apparent activation energies of the two steps are 114.8 and 123.5 kJ/mol, respectively. They are all lower than that of our previously obtained bulk LiBH4.  相似文献   

7.
In the present study, the synthesis of two different LiBH4–Y(BH4)3 and LiBH4–YH3 composites was performed by mechanochemical processing of the 4LiBH4–YCl3 mixture and as-milled 4LiBH4–YCl3 plus 3LiH. It was found that Y(BH4)3 and YH3 formed in situ during milling are effective to promote LiBH4 destabilization but differ substantially from each other in terms of the dehydrogenation pathway. During LiBH4–Y(BH4)3 dehydriding, Y(BH4)3 decomposes first generating in situ freshly YH3 and subsequently, it destabilizes LiBH4 with the formation of minor amounts of YB4. About 20% of the theoretical hydrogen storage was obtained via the rehydriding of YB4–4LiH–3LiCl at 400 °C and 6.5 MPa. As a novel result, a compound containing (B12H12)2− group was identified during dehydriding of Y(BH4)3. In the case of 4LiBH4–YH3 dehydrogenation, the increase of the hydrogen back pressure favors the formation of crystalline YB4, whereas a reduction to ≤0.1 MPa induces the formation of minor amounts of Li2B12H12. Although for hydrogen pressures ≤0.1 MPa direct LiBH4 decomposition can occur, the main dehydriding pathway of 4LiBH4–YH3 composite yields YB4 and LiH. The nanostructured composite obtained by mechanochemical processing gives good hydrogen storage reversibility (about 80%) regardless of the hydrogen back pressure.  相似文献   

8.
In the present study, we have investigated the effect of vanadium and its compounds (V, V2O5 and VCl3) on desorption characteristics of 1:2 magnesium amide (Mg(NH2)2) and lithium hydride (LiH) mixture. The hydrogen storage characteristics of 1:2 Mg(NH2)2/LiH mixture gets enhanced with admixing of V, V2O5 and VCl3 separately. The VCl3 has been found to be the most effective followed by V and V2O5. The activation energy for dehydrogenation process of 1:2 Mg(NH2)2/LiH mixture with and without catalyst has been evaluated using a method suggested by Ozawa et al. [25]. Based on the experimental results, schematic reaction scheme for decomposition of Mg(NH2)2 in the presence of VCl3 has also been proposed.  相似文献   

9.
Both kinetics and thermodynamics properties of MgH2 are significantly improved by the addition of Mg(AlH4)2. The as-prepared MgH2–Mg(AlH4)2 composite displays superior hydrogen desorption performances, which starts to desorb hydrogen at 90 °C, and a total amount of 7.76 wt% hydrogen is released during its decomposition. The enthalpy of MgH2-relevant desorption is 32.3 kJ mol−1 H2 in the MgH2–Mg(AlH4)2 composite, obviously decreased than that of pure MgH2. The dehydriding mechanism of MgH2–Mg(AlH4)2 composite is systematically investigated by using x-ray diffraction and differential scanning calorimetry. Firstly, Mg(AlH4)2 decomposes and produces active Al. Subsequently, the in-situ formed Al reacts with MgH2 and forms Mg–Al alloys. For its reversibility, the products are fully re-hydrogenated into MgH2 and Al, under 3 MPa H2 pressure at 300 °C for 5 h.  相似文献   

10.
LiFePO4-Li3V2(PO4)3 composite cathode material is synthesized by aqueous precipitation of FeVO4·xH2O from Fe(NO3)3 and NH4VO3, following chemical reduction and lithiation with oxalic acid as the reducer and carbon source. Samples are characterized by XRD, SEM and TEM. XRD pattern of the compound synthesized at 700 °C indicates olivine-type LiFePO4 and monoclinic Li3V2(PO4)3 are co-existed. TEM image exhibits that LiFePO4-Li3V2(PO4)3 particles are encapsulated with a carbon shell 5-10 nm in thickness. The LiFePO4-Li3V2(PO4)3 compound cathode shows good electrochemical performance, and its discharge capacity is about 139.1 at 0.1 C, 135.5 at 1 C and 116 mA h g−1 at 3 C after 30 cycles.  相似文献   

11.
12.
Hydrogen release from hydrolysis of LiNH2BH3, NaNH2BH3, LiH–NH3BH3 and NaH–NH3BH3 respectively was investigated in this paper. It is shown experimentally that LiNH2BH3 and NaNH2BH3 hydrolysis can release 3 equiv. of hydrogen at 25 °C. Hydrolysis of LiNH2BH3 or NaNH2BH3 exhibits greatly improved kinetics in comparison with neat NH3BH3 hydrolysis. The electronic and structural changes from NH3BH3 to [NH2BH3] play a crucial role in the improvements. The mechanism of LiNH2BH3 and NaNH2BH3 hydrolysis is the combination of H+ and OH ions of water with the polar ions of LiNH2BH3 and NaNH2BH3. The process of LiH–NH3BH3 and NaH–NH3BH3 hydrolysis comprises two steps: LiH or NaH first reacts with water and then the generated heat initiates thermohydrolysis of NH3BH3. LiH or NaH hydrolysis is prior to the reaction of LiH or NaH with NH3BH3. Our results show a novel strategy to promote hydrogen release kinetics of LiNH2BH3 and NaNH2BH3. Furthermore, our results also present a novel noncatalytic method for hydrogen release from NH3BH3 by co-hydrolyzing it with other highly exothermic hydrides.  相似文献   

13.
To improve the hydrogen storage property of LiBH4, the LiBH4/Ca(AlH4)2 reactive systems with various ratios were constructed, and their de-/hydrogenation properties as well as the reaction mechanisms were investigated experimentally. It was found that the sample with the LiBH4 to Ca(AlH4)2 molar ratio of 6:1 exhibits the best comprehensive hydrogen storage properties, desorbing hydrogen completely (8.2 wt.%) within 35 min at 450 °C and reversibly absorbing 4.5 wt.% of hydrogen at 450 °C under a hydrogen pressure as low as 4.0 MPa. During the first dehydrogenation process of the LiBH4/Ca(AlH4)2 systems, the CaH2 and Al particles were in situ precipitated via the self-decomposition of Ca(AlH4)2, and then reacted with LiBH4 to form CaB6, AlB2 and LiH. Whereafter, the sample can cycle between LiBH4 + Ca(BH4)2 + Al in the hydrogenated state and CaB6 + AlB2 + LiH in the dehydrogenated state.  相似文献   

14.
In this study, various nanoscale metal oxide catalysts, such as CeO2, TiO2, Fe2O3, Co3O4, and SiO2, were added to the LiBH4/2LiNH2/MgH2 system by using high-energy ball milling. Temperature programmed desorption and MS results showed that the Li–Mg–B–N–H/oxide mixtures were able to dehydrogenate at much lower temperatures. The order of the catalytic effect of the studied oxides was Fe2O3 > Co3O4 > CeO2 > TiO2 > SiO2. The onset dehydrogenation temperature was below 70 °C for the samples doped with Fe2O3 and Co3O4 with 10 wt.%. More than 5.4 wt.% hydrogen was released at 140 °C. X-ray diffraction indicated that the addition of metal oxides inhibited the formation of Mg(NH2)2 during ball milling processes. It is thought that the changing of the ball milling products results from the interaction of oxide ions in metal oxide catalysts with hydrogen atoms in MgH2. The catalytic effect depends on the activation capability of oxygen species in metal oxides on hydrogen atoms in hydrides.  相似文献   

15.
The various Mg–B–Al–H systems composed of Mg(BH4)2 and different Al-sources (metallic Al, LiAlH4 and its decomposition products) have been investigated as potential hydrogen storage materials. The role of Al was studied on the dehydrogenation and the rehydrogenation of the systems. The results indicate that the different Al-sources exhibit a similar improving effect on the dehydrogenation properties of Mg(BH4)2. Taking the Mg(BH4)2 + LiAlH4 system as an example, at first LiAlH4 rapidly decomposes into LiH and Al, then Mg(BH4)2 decomposes into MgH2 and B, finally the MgH2 reacts with Al, LiH and B, which forms Mg3Al2 and MgAlB4. The system starts to desorb H2 at 140 °C and desorbs 3.6 wt.% H2 below 300 °C, while individual Mg(BH4)2 starts to desorb H2 at 250 °C and desorbs only 1.3 wt.% H2 below 300 °C. The isothermal desorption kinetics of the Mg–B–Al–H systems is about 40% faster than that of Mg(BH4)2 at the hydrogen desorption ratio of 90%. In addition, the Mg–B–Al–H systems show partial reversibility at moderate temperature and pressure. For Al-added system, the product of rehydrogenation is MgH2, while for LiAlH4-added system the product is composed of LiBH4 and MgH2.  相似文献   

16.
A novel dual-cation/anion complex hydride (Li2Mg(BH4)2(NH2)2), which contains a theoretical hydrogen capacity of 12.1 wt%, is successfully synthesized for the first time by ball milling a mixture consisting of MgBH4NH2 and Li2BH4NH2. The prepared Li2Mg(BH4)2(NH2)2 crystallizes in a triclinic structure, and the [NH2] and [BH4] groups remain intact within the structure. Upon heating, the prepared Li2Mg(BH4)2(NH2)2 decomposes to release approximately 8.7 wt% hydrogen in a three-step reaction at 100–450 °C. In addition, a small amount of ammonia is evolved during the first and second thermal decomposition steps as a side product. This ammonia is responsible for the lower experimental dehydrogenation amount compared to the theoretical hydrogen capacity. The XRD and FTIR results reveal that Li2Mg(BH4)2(NH2)2 first decomposes to LiMgBN2, LiBH4, BN, LiH and MgBNH8 at 100–250 °C, and then, the newly formed MgBNH8 reacts with LiH to form Mg, LiBH4 and BN at 250–340 °C. Finally, the decomposition of LiBH4 releases hydrogen and generates LiH and B at 340–450 °C.  相似文献   

17.
A one-to-one molar ratio of LiNH2 to MgH2 was ball milled and characterized to evaluate the proposed hydrogen storage reaction: LiNH2 + MgH2 ⇔ LiMgN + 2H2. The pressure–composition isotherm shows that less than 3.4 wt.% H2 is released at a plateau pressure near 20 atm at 210 °C. Furthermore, X-ray diffraction show that the products of the reaction include Li2Mg2(NH)3 rather than LiMgN. Combined thermogravimetric and residual gas analyses reveal that large quantities of ammonia are released from the system.  相似文献   

18.
To prepare a high-capacity cathode material with improved electrochemical performance for lithium rechargeable batteries, Co3(PO4)2 nanoparticles are coated on the surface of powdered Li[Co0.1Ni0.15Li0.2Mn0.55]O2, which is synthesized by a simple combustion method. The coated powder prepared under proper conditions for Co3(PO4)2 content and annealing temperature shows an optimum coating layer that consists of a LixCoPO4 phase formed by reaction with lithium impurities during heat treatment. A sample coated with 3 wt.% Co3(PO4)2 and annealed at 800 °C proves to be the best in terms of specific capacity, cycle performance and rate capability. Thermal stability is also enhanced by the coating, as demonstrated a decrease in the onset temperature and/or the heat generated during thermal runaway.  相似文献   

19.
The evolution of diborane accompanying H2 release during the decomposition of transition metal borohydrides reduces the purity of evolved hydrogen and results in capacity loss during cycling. To solve the problem, a small amount of LiNH2 is doped into a 3LiBH4/MnF2 composite and the decomposition properties are investigated. The results show that after doping LiNH2, the formation of diborane during decomposition is effectively suppressed meanwhile the decomposition temperature is significantly reduced. Around 5 wt.% pure hydrogen can be released at 95–140 °C from 5 wt.% LiNH2-doped 3LiBH4/MnF2 composite. These improvements in the decomposition performance are mainly attributed to the prevention of the formation of B–H–B bonds for B2H6 and the destabilization of B–H bonds in borohydrides by the interaction of BH4 and NH2.  相似文献   

20.
The significantly enhanced dehydrogenation performance of binary complex system, NH3BH3/LiBH4·NH3, were achieved through a chemical modification of LiH to form ternary composites of x (LiH–NH3BH3)/LiBH4·NH3. Among the studied composites, 3LiH–3NH3BH3/LiBH4·NH3 released ca. 10 wt. % high-pure hydrogen (>99.9 mol%) below 100 °C with fast kinetics, while less than 8 wt. % hydrogen, accompanied with a fair number of volatile byproducts, were released from 3NH3BH3/LiBH4·NH3 at the same conditions. Further investigations revealed that the hydrogen emission from x (LiH–NH3BH3)/LiBH4·NH3 composites is based on the combination mechanism of Hδ+ and Hδ− through the interaction between LiH–NH3BH3 and NH3 group in LiBH4·NH3, in which the controllable protic hydrogen source from the stabilized NH3 group played a crucial role in providing optimal stoichiometric ratio of Hδ+ and Hδ−, and thus leading to the significant improvement of dehydrogenation capacity and purity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号