首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A hydrogen producing strain newly isolated from anaerobic sludge in an anaerobic bioreactor, was identified as Clostridium beijerinckii Fanp3 by 16S rDNA gene sequence analysis and detection by BioMerieux Vitek. The strain could utilize various carbon and nitrogen sources to produce hydrogen, which indicates that it has the potential of converting renewable wastes into hydrogen. In batch cultivations, the optimal initial pH of the culture medium was between 6.47 and 6.98. Using 0.15 M phosphate as buffer could alleviate the medium acidification and improve the overall performance of C. beijerinckii Fanp3 in hydrogen production. Culture temperature of 35 °C was established to be the most favorable for maximum rate of hydrogen production. The distribution of soluble metabolic products (SMP) was also greatly affected by temperature. Considering glucose as a substrate, the activation energy (Ea) for hydrogen production was calculated as 81.01 kcal/mol and 21.4% of substrate energy was recovered in the form of hydrogen. The maximal hydrogen yield and the hydrogen production rate were obtained as 2.52 mol/mol-glucose and 39.0 ml/g-glucose h−1, respectively. These results indicate that C. beijerinckii Fanp3 is an ideal candidate for the fermentative hydrogen production.  相似文献   

2.
A new hydrogen-producing photosynthetic bacterium, designated as Rhodovulum sulfidophilum P5, was enriched and isolated from the sludge of a marine shrimp cultivation farm. During fermentation, hydrogen was mainly produced in the late exponential and stationary phases. The optimum culture conditions of strain P5 for hydrogen production were NaCl concentration of 20 g/L, initial pH of 8, temperature of 30 °C, and light intensity of 100 μmol photons/m2 s. The maximum hydrogen yield and rate were 2.56 ± 0.18 mol/mol acetate and 19.4 ± 1.6 mL/L h, respectively. Under optimum culture conditions, the hydrogen conversion efficiencies of P5 from acetate, propionate, and butyrate were (64.62 ± 5.05)%, (17.95 ± 0.72)%, and (41.83 ± 2.68)%, respectively. Taken together, these results suggest that this strain has a high salt tolerance and the potential to be used for biohydrogen production and biological treatment of marine organic wastewater.  相似文献   

3.
In this study, the photosynthetic hydrogen production rates by some strains of green microalgae were investigated. Three strains of Chlorella isolated from arid soil and foggaras's water in the Algerian Sahara were used. Chlorella sorokiniana strain Ce, Chlorella salina strain Mt and Chlorella sp strain Pt6 produced hydrogen gas under sulphur-deprived conditions, but its rate was dependent on strain type and oxygen partial pressure in medium. In C. sorokiniana strain Ce, the maximum value of hydrogen accumulated was 147 ml at 222 h at 2% of O2 pressure. Compared to C. sorokiniana strain Ce, C. salina strain Mt and Chlorella sp strain Pt6 produced less amount of hydrogen, but they were able to sustain with an O2 partial pressure of up to 11–15.4%. Our data were compared with hydrogen production by Chlamydomonas reinhardtii. In this communication, the relationship between physiological behaviour, biochemical characteristic (starch and protein) and rates gas production (O2 and H2) was also specified.  相似文献   

4.
The biochemical hydrogen potential (BHP) tests were conducted to investigate the metabolism of glucose fermentation and hydrogen production performance of four Clostridial species, including C. acetobutylicum M121, C. butyricum ATCC19398, C. tyrobutyricum FYa102, and C. beijerinckii L9. Batch experiments showed that all the tested strains fermented glucose, reduced medium pH from 7.2 to a value between 4.6 and 5.0, and produced butyrate (0.37–0.67 mmol/mmol-glucose) and acetate (0.34–0.42 mmol/mmol-glucose) as primary soluble metabolites. Meanwhile, a significant amount of hydrogen gas was produced accompanied with glucose degradation and acid production. Among the strains examined, C. beijerinckii L9 had the highest hydrogen production yield of 2.81 mmol/mmol-glucose. A kinetic model was developed to evaluate the metabolism of glucose fermentation of those Clostridium species in the batch cultures. The model, in general, was able to accurately describe the profile of glucose degradation as well as production of biomass, butyrate, acetate, ethanol, and hydrogen observed in the batch tests. In the glucose re-feeding experiments, the C. tyrobutyricum FYa102 and C. beijerinckii L9 isolates fermented additional glucose during re-feeding tests, producing a substantial amount of hydrogen. In contrast, C. butyricum ATCC19398 was unable to produce more hydrogen despite additional supply of glucose, presumably due to the metabolic shift from acetate/butyrate to lactate/ethanol production.  相似文献   

5.
A unique thermophilic fermentative hydrogen-producing strain H53214 was isolated from a deep-sea hydrothermal vent environment, and identified as Caloranaerobacter azorensis based on bacterial 16S rRNA gene analysis. The optimum culture condition for hydrogen production by the bacterium, designated C. azorensis H53214, was investigated by the response surface methodology (RSM). Eight variables including the concentration of NaCl, glucose, yeast, tryptone, FeSO4 and MgSO4, initial pH and incubation temperature were screened based on the Plackett–Burman design. The results showed that initial pH, tryptone and yeast were significant variables, which were further optimized using the steepest ascent method and Box–Behnken design. The optimal culture conditions for hydrogen production were an initial pH of 7.7, 8.3 g L−1 tryptone and 7.9 g L−1 yeast. Under these conditions, the maximum cumulative hydrogen volume, hydrogen yield and maximum H2 production rate were 1.58 L H2 L−1 medium, 1.46 mol H2 mol−1 glucose and 25.7 mmol H2 g−1 cell dry weight (CDW) h−1, respectively. By comparison analysis, strain H53214 was superior to the most thermophilic hydrogen producers because of the high hydrogen production rate. In addition, the isolation of C. azorensis H53214 indicated the deep-sea hydrothermal environment might be a potential source for fermentative hydrogen-producing thermophiles.  相似文献   

6.
Klebsiella pneumoniae ECU-15 (EU360791), which was isolated from anaerobic sewage sludge, was investigated in this paper for its characteristics of fermentative hydrogen production. It was found that the anaerobic condition favored hydrogen production than that of the micro-aerobic condition. Culture temperature and pH of 37 °C and 6.0 were the most favorable for the hydrogen production. The strain could grow in several kinds of monosaccharide and disaccharide, as well as the complicated corn stalk hydrolysate, with the best results exhibited in glucose. The maximum hydrogen production rate and yield of 482 ml/l/h and 2.07 mol/mol glucose were obtained at initial glucose concentration of 30 g/L and 5 g/L, respectively. Fermentation results in the diluent corn stalk hydrolysate showed that cell growth was not inhibited. However, the hydrogen production of 0.65 V/V was relatively lower than that of the glucose (1.11 V/V), which was mainly due to the interaction between xylose and glucose.  相似文献   

7.
The effect of ferrous ion (0–3.2 mg/l) on photo heterotrophic hydrogen production was studied in batch culture using sodium lactate as substrate. The results showed that hydrogen production by Rhodobacter sphaeroides   was significantly suppressed when Fe2+Fe2+ was limited. Hydrogen production increased linearly with an increase in Fe2+Fe2+ concentration in the range of 0–1.6 mg/l; reaching a maximum at 2.4 mg/l. When hydrogen production was suppressed in the above medium, a pH increase to 8.9 was observed, and the ratio of lactate utilized to total organic carbon removal was found to be increased, indicating that more soluble organic products were produced. Under the Fe2+Fe2+ limited conditions, ferrous iron was shown to have a greater effect on hydrogen production by Rb. sphaeroides than that by the anaerobic heterotrophic bacterium Clostridium butyricum.  相似文献   

8.
Rhodobacter capsulatus is purple non-sulfur (PNS) bacterium which can produce hydrogen and CO2 by utilizing volatile organic acids in presence of light under anaerobic conditions. Photofermentation by PNS bacteria is strongly affected by temperature and light intensity. In the present study we present the kinetic analysis of growth, hydrogen production, and dual consumption of acetic acid and lactic acid at different temperatures (20, 30 and 38 °C) and light intensities (1500, 2000, 3000, 4000 and 5000 lux). The cell growth data fitted well to the logistic model and the cumulative hydrogen production data fitted well to the Modified Gompertz Model. The model parameters were affected by temperature and light intensity. Lactic acid was found to be consumed by first order kinetics. Rate of consumption of acetic acid was zero order until most of the lactic acid was consumed, and then it shifted to first order. The results revealed that the optimum light intensities for maximum hydrogen production were 5000 lux for 20 °C and 3000 lux for 30 °C and 38 °C.  相似文献   

9.
Three bacteria, named L2, L3 and L4, were isolated from contaminated cultures of Chlamydomonas reinhardtii strain cc849 in laboratory. The phylogenetic analysis based on 16S rDNA sequences showed that L2, L3 and L4 belonged to genus Stenotrophomonas, Microbacterium and Pseudomonas, respectively. The co-cultivation of isolated L2, L3 and L4 with purified algae, respectively, demonstrated that moderate bacterial concentration did not affect algal growth significantly but improved algal H2 production obviously. The maximal H2 yields were gained by the co-culture of algae with L2 or L4, about 4.0 times higher than that of the single algal culture. Increased respiration rate or O2 consumption was the main reason for the enhancement of H2 yield of the co-cultures.  相似文献   

10.
A new fermentative hydrogen-producing bacterium was isolated from a domestic landfill and identified as Enterobacter asburiae using 16S rRNA gene sequencing and DNA–DNA hybridization methods. The isolated bacterium, designated as Enterobacter asburiae SNU-1, is a new species that has never been examined as a potential hydrogen-producing bacterium. This study examined the hydrogen-producing ability of Enterobacter asburiae SNU-1. During fermentation, the hydrogen was mainly produced in the stationary phase. The hydrogen yield based on the formate consumption was 0.43 mol hydrogen/mol formate. This strain was able to produce hydrogen over a wide range of pH (4–7.5), with the optimum pH being pH 7. The level of hydrogen production was also affected by the initial glucose concentration, and the optimum value was found to be 25 g glucose/l. The maximum and overall hydrogen productivities were 398 and 174 ml/l/hr, respectively, at pH 7 with an initial glucose concentration of 25 g/l. This strain could produce hydrogen from glucose and many other carbon sources such as fructose, sucrose, and sorbitol.  相似文献   

11.
The present study investigated hydrogen production potential of novel marine Clostridium amygdalinum strain C9 isolated from oil water mixtures. Batch fermentations were carried out to determine the optimal conditions for the maximum hydrogen production on xylan, xylose, arabinose and starch. Maximum hydrogen production was pH and substrate dependant. The strain C9 favored optimum pH 7.5 (40 mmol H2/g xylan) from xylan, pH 7.5–8.5 from xylose (2.2–2.5 mol H2/mol xylose), pH 8.5 from arabinose (1.78 mol H2/mol arabinose) and pH 7.5 from starch (390 ml H2/g starch). But the strain C9 exhibited mixed type fermentation was exhibited during xylose fermentation. NaCl is required for the growth and hydrogen production. Distribution of volatile fatty acids was initial pH dependant and substrate dependant. Optimum NaCl requirement for maximum hydrogen production is substrate dependant (10 g NaCl/L for xylose and arabinose, and 7.5 g NaCl/L for xylan and starch).  相似文献   

12.
The photosynthetic bacterium, Rhodobacter capsulatus, produces hydrogen under nitrogen-limited, anaerobic, photosynthetic culture conditions, using various carbon substrates. In the present study, the relationship between light intensity and hydrogen production has been modelled in order to predict both the rate of hydrogen production and the amount of hydrogen produced at a given time during batch cultures of R. capsulatus. The experimental data were obtained by investigating the effect of different light intensities (6000–50,000 lux) on hydrogen-producing cultures of R. capsulatus grown in a batch photobioreactor, using lactate as carbon and hydrogen source. The rate of hydrogen production increased with increasing light intensity in a manner that was described by a static Baly model, modified to include the square of the light intensity. In agreement with previous studies, the kinetics of substrate utilization and growth of R. capsulatus was represented by the classical Monod or Michaelis–Menten model. When combined with a dynamic Leudekong–Piret model, the amount of hydrogen produced as a function of time was effectively predicted. These results will be useful for the automatization and control of bioprocesses for the photoproduction of hydrogen.  相似文献   

13.
14.
This work presents the results of a two-stage (carbon fixation and hydrogen production) experimental study for hydrogen production from microalgae using optical fiber as an internal light source. Effect of absence and presence of light on Chlamydomonas reinhardtii culture’s pH shift is also evaluated. The culture pH value is a function of light intensity; the pH in the alkaline range changes from 7.5 to 9.5 in the presence and absence of optical fiber respectively. The maximum rate of hydrogen production in the presence of exogenic glucose and optical fiber is 6 mL/Lcult/hour, which is higher than other reported values. This study has also revealed that the presence of light reduces the lag time for hydrogen production from 12 to 5 h.  相似文献   

15.
A preliminary study on photoproduction of hydrogen by Rhodobacter capsulatus KU002 isolated from leather industry effluents under different cultural conditions with various carbon and nitrogen sources was investigated. Hydrogen production was measured using a Gas chromatograph. Lactate promoted more amounts of hydrogen production under anaerobic light conditions and aerobic light conditions. Cumulative hydrogen production by the organism was recorded at various time intervals. Incubation period of 120 h was optimum for production of hydrogen. pH 7.0 ± 0.2 was optimum for production of hydrogen by growing cells, while pH 7.5 ± 0.26 for resting cells. l-cystine was a good nitrogen source for production of hydrogen. Growing cells produced more amount of hydrogen than resting cells. Glutamine was a poor nitrogen source for hydrogen production by Rb. capsulatus. Significance of the above results in the presence of existing literature is discussed.  相似文献   

16.
A mutant strain of the anaerobic purple sulfur bacterium Thiocapsa roseopersicina, containing only nitrogenase as a functionally active enzyme for H2 generation was utilized to study the production of H2 from organic acids (acetate, pyruvate and succinate). Two types of potential substrates for H2 production, thiosulfate and salts of various organic acids, were compared under photoheterotrophic growth conditions. Thiosulfate proved to be the preferred electron donor for T. roseopersicina; the consumption of organic acids became pronounced only following depletion of the thiosulfate supply. The system is suitable for the generation of H2 from effluents of heterotrophic dark fermentation processes or waste streams rich in inorganic reduced sulfur compounds and/or simple organic acids.  相似文献   

17.
The redox balance and bacteriochlorophyll (Bchl) synthesis are both significant to hydrogen generation in photosynthetic bacteria. In this study, spbA and hupSL genes were knocked out from the genome of Rhodobacter sphaeroides HY01. The UV–vis spectra showed that the Bchl contents of spbA mutants were enhanced under photosynthetic conditions. The hydrogen yields of WH04 (hupSL) and WSH10 (spbA, hupSL) mutants increased by 19.4%, 21.8%, and the maximum hydrogen evolution rates increased by 29.9% and 55.0% respectively using glutamate as sole nitrogen source. The maximum hydrogen production rate of WSH10 was up to 141.9 mL/(L·h). The nifH expression levels of the mutants and the wild type supported the correlation between hydrogen production and nitrogenase activity. The results demonstrate that disruption of spbA in R. sphaeroides can partially derepress the ammonium inhibition in nitrogenase activity, and indicate that spbA is a negative regulator in nitrogenase synthesis in the presence of ammonium.  相似文献   

18.
Corn cob is a promising hydrogen fermentation substrate, not only because of its abundant and low cost, but also because of its high cellulose and hemicellulose content. However, little information is available on the use of corn cob as a feedstock for hydrogen production. In this study, corn cob was hydrolyzed by cellulase after acid steam-explosion, alkali soaking, or steam-explosion pretreatment. The liquid products of pretreatment and the enzymatic hydrolysates were then used as carbon sources for hydrogen production by Clostridium hydrogeniproducens HR-1. Pretreatment followed by enzymatic hydrolysis yielded 720, 670, and 530 mg reducing sugars/g corn cob, and the hydrogen yield from corn cob reached 119, 100, and 83 ml H2/g corn cob, which is 55.9%, 46.7%, and 38.8% of the theoretical hydrogen yield from corn cob using C. hydrogeniproducens HR-1, respectively.  相似文献   

19.
Thermoanaerobacterium-rich sludge was used for hydrogen production and phenol removal from palm oil mill effluent (POME) in the presence of phenol concentration of 100–1000 mg/L. Thermoanaerobacterium-rich sludge yielded the most hydrogen of 4.2 L H2/L-POME with 65% phenol removal efficiency at 400 mg/L phenol. Butyric acid and acetic acid were the main metabolites. The effects of oil palm ash, NH4NO3 and iron concentration (Fe2+) on hydrogen production and phenol removal efficiency from POME by Thermoanaerobacterium-rich sludge was investigated using response surface methodology (RSM). The RSM results indicated that the presence of 0.2 g Fe2+/L, 0.3 g/L NH4NO3 and 20 g/L oil palm ash in POME could improved phenol removal efficiency, with predicted hydrogen production and phenol removal efficiency of 3.45 L H2/L-POME and 93%, respectively. In a confirmation experiment under optimized conditions highly reproducible results were obtained, with hydrogen production and phenol removal efficiency of 3.43 ± 0.12 L H2/L-POME and 92 ± 1.5%, respectively. Simultaneous hydrogen production and phenol removal efficiency in continuous stirred tank reactor at hydraulic retention time (HRT) of 1 and 2 days were 4.0 L H2/L-POME with 85% and 4.2 L H2/L-POME with 92%, respectively. Phenol degrading Thermoanaerobacterium-rich sludge comprised of Thermoanaerobacterium thermosaccharolyticum, Thermoanaerobacterium aciditolerans, Desulfotomaculum sp., Bacillus coagulans and Clostridium uzonii. Phenol degrading Thermoanaerobacterium-rich sludge has great potential to harvest hydrogen from phenol-containing wastewater.  相似文献   

20.
Defined co-cultures of hydrogen (H2) producers belonging to Citrobacter, Enterobacter, Klebsiella and Bacillus were used for enhancing the efficiency of biological H2 production. Out of 11 co-cultures consisting of 2–4 strains, two co-cultures composed of Bacillus cereus EGU43, Enterobacter cloacae HPC123, and Klebsiella sp. HPC793 resulted in H2 yield up to 3.0 mol mol−1 of glucose. Up-scaling of the reactor by 16-fold resulted in a corresponding increase in H2 production with an actual evolution of 7.44 L of H2. It constituted 58.2% of the total biogas. Continuous culture evolution of H2 by co-cultures (B. cereus EGU43 and E. cloacae HPC123) immobilized on ligno-cellulosic materials resulted in 6.4-fold improvement in H2 yield compared to free floating bacteria. This synergistic influence of B. cereus and E. cloacae can offer a better strategy for H2 production than undefined or mixed cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号