首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Key factors affecting biohydrogen production from waste glycerol and sludge by anaerobic mixed cultures were optimized using response surface methodology (RSM) with central composite design (CCD). Investigated parameters were waste glycerol concentration, sludge concentration, and the amount of Endo–nutrient addition. Concentrations of waste glycerol and sludge had a significant individual effect on hydrogen production rate (HPR) (p ≤ 0.05). The interactive effect on HPR (p ≤ 0.05) was found between waste glycerol concentration and sludge concentration. The optimal conditions for the maximum HPR were: waste glycerol concentration 22.19 g/L, sludge concentration 7.16 g-total solid (TS/L), and the amount of Endo–nutrient addition 2.89 mL/L in which the maximum HPR of 1.37 mmol H2/L h was achieved. Using the optimal conditions, HPR from a co-digestion of waste glycerol and sludge (1.37 mmol H2/L h) was two times greater than the control (waste glycerol without addition of sludge) (0.76 mmol H2/L h), indicating a significant enhancement of HPR by sludge. Major metabolites of the fermentation process were ethanol, 1,3-propanediol (1,3-PD), lactate, and formate.  相似文献   

2.
The feasibility of hydrogen production from distillers grains substrate, an industrial cellulosic waste, was investigated. A substrate concentration of 80 g/L gave the maximum production at 50 °C and pH of 6.0 using sewage sludge. Four controllable factors with three levels: seed sludge (two sewage sludges and cow dung), temperature (40, 50, and 60 °C), pH (6, 7 and 8) and seed pretreatment (none, heat, and acid) were selected in Taguchi experimental design to optimize fermentation conditions. The peak hydrogen and ethanol productions were found with heat-treated cow dung seed, substrate concentration 80 g/L, 50 °C and pH 6. The peak hydrogen production rate and hydrogen yield were 7.9 mmol H2/L/d and 0.40 mmol H2/g-COD respectively whereas the peak ethanol production was 3050 mg COD/L and rate 0.22 g EtOH/L/d. A total bioenergy yield of 41 J/g substrate was obtained which was 21% and 79% from hydrogen and ethanol respectively.  相似文献   

3.
Biohydrogen production from crude glycerol by immobilized Klebsiella sp. TR17 was investigated in an up-flow anaerobic sludge blanket (UASB) reactor. The reactor was operated under non-sterile conditions at 40C and initial pH 8.0 at different hydraulic retention times (HRTs) (2–12 h) and glycerol concentrations (10–30 g/L). Decreasing the HRT led to an increase in hydrogen production rate (HPR) and hydrogen yield (HY). The highest HPR of 242.15 mmol H2/L/d and HY of 44.27 mmol H2/g glycerol consumed were achieved at 4 h HRT and glycerol concentrations of 30 and 10 g/L, respectively. The main soluble metabolite was 1,3-propanediol, which implies that Klebsiella sp. was dominant among other microorganisms. Fluorescence in situ hybridization (FISH) revealed that the microbial community was dominated by Klebsiella sp. with 56.96, 59.45, and 63.47% of total DAPI binding cells, at glycerol concentrations of 10, 20, and 30 g/L, respectively.  相似文献   

4.
Thermophilic hydrogen production from xylan by Thermoanaerobacterium thermosaccharolyticum KKU-ED1 isolated from elephant dung was investigated using batch fermentation. The optimum conditions for hydrogen production from xylan by the strain KKU-ED1 were an initial pH of 7.0, temperature of 55 °C and xylan concentration of 15 g/L. Under the optimum conditions, the hydrogen yield (HY), hydrogen production rate (HPR) and xylanase activity were 120.05 ± 15.07 mL H2/g xylan, 11.53 ± 0.19 mL H2/L h and 0.41 units/mL, respectively. The optimum conditions were then used to produce hydrogen from 62.5 g/L sugarcane bagasse (SCB) (equivalent to 15 g/L xylan) in which the HY and HPR of 1.39 ± 0.10 mL H2/g SCB (5.77 ± 0.41 mL H2/g xylan) and 0.66 ± 0.04 mL H2/L h, respectively, were achieved. In comparison to the other strains, the HY of the strain KKU-ED1 (120.05 ± 15.07 mL H2/g xylan) was close to that of Clostridium sp. strain X53 (125.40 mL H2/g xylan) and Clostridium butyricum CGS5 (90.70 mL H2/g xylan hydrolysate).  相似文献   

5.
Batch tests were conducted to evaluate the enhancement of hydrogen/ethanol (EtOH) productivity using cow dung microflora to ferment α-cellulose and saccharification products (glucose and xylose). Hydrogen/ethanol production was evaluated based on hydrogen/ethanol yields (HY/EY) under 55 °C at various initial pH conditions (5.5–9.0). Our test results indicate that cow dung sludge is a good mixed natural-microflora seed source for producing biohydrogen/ethanol from cellulose and xylose. The heat-pretreatment, commonly used to produce hydrogen more efficiently from hexose, applied to mixed anaerobic cultures did not help cow dung culture convert cellulose and xylose into hydrogen/ethanol. Instead of heat-pretreatment, the mixed culture received enrichments cultivated at 55 °C for 4 days. Positive results were observed: hydrogen/ethanol production from fermenting cellulose and xylose was effectively enhanced at increases of 4.8 (ethanol) to 8 (hydrogen) and 2.4 (ethanol) to 15.6 (hydrogen) folds, respectively. In which, the ethanol concentration produced from xylose reached 4–4.4 g/L, an output comparable to that of using heat-treated sewage sludge and better than that (1.25–3 g/L) using pure cultures. Our test results show that for the enriched cultures the initial cultivation pH can affect hydrogen/ethanol production including HY, EY and liquid fermentation product concentration and distribution. These results were also concurred using a denaturing gradient gel electrophoresis analysis saying that both cultivation pH and substrate can affect the enriched cow dung culture microbial communities. The enriched cow dung culture had an optimal initial cultivation pH range of 7.6–8.0 with peak HY/EY values of 2.8 mmol-H2/g-cellulose, 5.8 mmol-EtOH/g-cellulose, 0.3 mol-H2/mol-xylose and 1 mol-EtOH/mol-xylose. However, a pH change of 0.5 units from the optimal values reduced hydrogen/ethanol production efficiency by 20%. Strategies based on the experimental results for optimal hydrogen/ethanol production from cellulose and xylose using cow dung microflora are proposed.  相似文献   

6.
Immobilized Clostridium butyricum TISTR 1032 on sugarcane bagasse improved hydrogen production rate (HPR) approximately 1.2 times in comparison to free cells. The optimum conditions for hydrogen production by immobilized C. butyricum were initial pH 6.5 and initial sucrose concentration of 25 g COD/L. The maximum HPR and hydrogen yield (HY) of 3.11 L H2/L substrate·d and 1.34 mol H2/mol hexose consumed, respectively, were obtained. Results from repeated batch fermentation indicated that the highest HPR of 3.5 L H2/L substrate·d and the highest HY of 1.52 mol H2/mol hexose consumed were obtained at the medium replacement ratio of 75% and 50% respectively. The major soluble metabolites in both batch and repeated batch fermentation were butyric and acetic acids.  相似文献   

7.
This study aimed to optimize the hydrogen production from various seed sludges (two kinds of sewage sludges (S1, S2), cow dung (S3), granular sludge (S4) and effluent from condensed soluble molasses H2 fermenter (S5)) and enhancement of hydrogen production via heat treatment for substrate and seed sludge by using the solid residues of biodiesel production (BDSR). Two batch assay tests were operated at a biodiesel solid residue concentration of 10 g/L, temperature of 55 °C and an initial cultivation pH of 8. The results showed that the peak hydrogen yield (HY) of 94.6 mL H2/g volatile solid (VS) (4.1 mmolH2/g VS) was obtained from S1 when substrate and seed sludge were both heat treated at 100 °C for 1 h. However, the peak hydrogen production rate (HPR) and specific hydrogen production rate (SHPR) of 1.48 L H2/L-d and 0.30 L H2/g VSS-d were obtained from S2 without any treatment. The heat treatment was found to increase the HY in both the cases of sewage sludges S1 and S2.The HY of 89.5 mL H2/g VS (without treatment) was increased to 94.6 mL H2/g VS and 82.6 mL H2/g VS (without treatment) was increased to 85.7 mL H2/g VS for S1 and S2. The soluble metabolic product (SMP) analysis showed that the fermentation followed mainly acetate–butyrate pathway with considerable production of ethanol. The total bioenergy production was calculated as 2.8 and 2.9 kJ/g VS for favorable hydrogen and ethanol production, respectively. The BDSR could be used as feedstock for dark fermentative hydrogen production.  相似文献   

8.
Hydrogen was produced in a biotrickling filter (BF) packed with perlite and fed with oat straw acid hydrolysate at 30 °C. Inlet chemical oxygen demand (COD) from 1.2 to 35 g/L and hydraulic retention time (HRT) between 24 h and 6 h were assayed. With increasing inlet COD or decreasing HRT, H2 production rate (HPR) increased but H2 production yield (HY) decreased. Maximum HPR of 81.4 mL H2/Lreactor h (3.3 mmol H2/Lreactor h) and HY of 2.9 mol H2/molhexose consumed were found at an inlet COD of 0.05 gCOD/L h (HRT 24 h) and 2.9 gCOD/L h (HRT 12 h), respectively. Maximum hydrogen composition in gas was 45 ± 4% (v/v) with CO2 as balance. Methane was not detected. Maximum HPR and inlet COD used in this work were higher than others reported for reactors with suspended or fixed biomass. However, implementation of strategies for biomass control to avoid reactor clogging is needed.  相似文献   

9.
The phenomenon of bacterial wash-out frequently occurs in the traditional continuous stirred tank reactor (CSTR) systems at low hydraulic retention time (HRT). In this study, the effect of different aspect ratios, height (H) to diameter (D) of 1:1, 3:1 and 5:1, of a CSTR with immobilized anaerobic sludge on hydrogen (H2) production were investigated. The pH, volatile suspended solids (VSS) and total solids (TS) concentrations of the seed sludge were 6.8, 33.3 and 65.1 g/L, respectively. Thermally treated sludge was immobilized by silicone gel entrapment approach. The entrapped-sludge system operated stably at a low HRT without suffering from cell wash-out. Hence, the hydrogen production rate (HPR) was enhanced by increasing organic loading rates. The immobilized sludge CSTRs were operated at 40 °C with sucrose (10, 20, 30 and 40 g COD/L) and Endo nutrient medium at different HRTs (4, 2, 1 and 0.5 h). It was found that the granule formation enhanced HPR. The maximum HPR and the H2 yield were found to be 15.36H2 L/h/L and 3.16 mol H2/mol sucrose, respectively, with the H2 content in the biogas above 44% for all tests runs.  相似文献   

10.
Bio-hydrogen production from food waste by anaerobic mixed cultures was conducted in a continuous stirred tank reactor (CSTR). The hydraulic retention time (HRT) was optimized in order to maximize hydrogen yield (HY) and hydrogen production rate (HPR). The maximum hydrogen content (38.6%), HPR (379 mL H2/L. d) and HY (261 mL H2/g-VSadded) were achieved at the optimum HRT of 60 h. The major soluble metabolite products were butyric and acetic acids which indicated a butyrate-acetate type fermentation. Operation of CSTR at HRT 60 h could select hydrogen producing bacteria and eliminate lactic acid bacteria and acetogenic bacteria. The microbial community analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) revealed that the predominant hydrogen producer was Clostridium sp.  相似文献   

11.
This study investigated the effects of sugar composition and hydraulic retention time (HRT) on continuous hydrogen fermentation. Continuously-stirred tank reactors (CSTRs) were inoculated with heat-treated digester sludge and fed with 15 g/L of glucose, galactose and galactose: glucose mixture (8:2 ratio-simulating the hydrolysate composition of macroalgae) at HRTs of 6–24 h. Peak hydrogen production rate (HPR) and hydrogen yield (HY) of 4.49 L/L/d and 1.62 mol/mol glucoseadded were attained while using glucose as feedstock at HRTs of 6 and 18 h, respectively. Meanwhile, galactose provided a peak HPR and HY of 2.35 L/L/d and 1.00 mol/mol galactoseadded during the HRTs of 12 and 24 h, respectively. In case of mixed sugars (galactose 8: glucose 2) the production performances were inferior to the sole sugar conditions due to the low substrate utilization of less than 65%, which showed a maximal HPR and HY of 2.75 L/L/d and 0.48 mol/mol carbohydrateadded at the HRTs of 6 and 18 h, respectively.  相似文献   

12.
In the present work, with corn stover hydrolysate as the substrate, an efficient hydrogen-producing thermophile, Thermoanaerobacterium thermosaccharolyticum W16, was added to three kinds of seed sludge (rotten corn stover (RCS), cow dung compost (CDC), and sludge from anaerobic digestion (SAD)) to investigate the effect of bioaugmentation on thermophilic hydrogen production. Batch test results indicate that the bioaugmentation with a small amount of the strain T. thermosaccharolyticum W16 (5% of total microbes) increased the hydrogen yield to varying degrees (RCS: from 8.78 to 9.90 mmol H2/g utilized sugar; CDC: from 8.18 to 8.42 mmol H2/g utilized sugar; SAD: from 8.55 to 9.17 mmol H2/g utilized sugar). The bioaugmentation process also influenced the soluble metabolites composition towards more acetate and less butyrate production for RCS, and more acetate and less ethanol accumulation for SAD. Microbial community analysis indicates that Thermoanaerobacterium spp. and Clostridium spp. dominated microbial community in all situations and might be mainly responsible for thermophilic hydrogen generation. For RCS and SAD, the bioaugmentation obviously increased the relative abundance of the strain T. thermosaccharolyticum W16 in microbial community, which might be the main reason for the improvement of hydrogen production in these cases.  相似文献   

13.
The objective of this study was to optimize the culture conditions for simultaneous saccharification and fermentation (SSF) of cellulose for bio-hydrogen production by anaerobic mixed cultures in elephant dung under thermophilic temperature. Carboxymethyl cellulose (CMC) was used as the model substrate. The investigated parameters included initial pH, temperature and substrate concentration. The experimental results showed that maximum hydrogen yield (HY) and hydrogen production rate (HPR) of 7.22 ± 0.62 mmol H2/g CMCadded and 73.4 ± 3.8 mL H2/L h, respectively, were achieved at an initial pH of 7.0, temperature of 55 °C and CMC concentration of 0.25 g/L. The optimum conditions were then used to produce hydrogen from the cellulose fraction of sugarcane bagasse (SCB) at a concentration of 0.40 g/L (equivalent to 0.25 g/L cellulose) in which an HY of 7.10 ± 3.22 mmol H2/g celluloseadded. The pre-dominant hydrogen producers analyzed by polymerase chain reaction-denaturing gel gradient electrophoresis (PCR-DGGE) were Thermoanaerobacterium thermosaccharolyticum and Clostridium sp. The lower HY obtained when the cellulose fraction of SCB was used as the substrate might be due to the presence of lignin in the SCB as well as the presence of Lactobacillus parabuchneri and Lactobacillus rhamnosus in the hydrogen fermentation broth.  相似文献   

14.
Cellulosic materials-based de-oiled Jatropha Waste (DJW) was fermented to H2 and CH4 using sewage sludge inoculum. Batch assays were performed at various substrate concentrations (40–240 g/L), temperatures (25–65 °C) and pHs (5.5–7.5). The peak hydrogen production rate (HPR) and hydrogen yield (HY) of 744.0 ± 11.3 mL H2/L-d and 10.6 ± 0.2 mL H2/g VS obtained when the optimal substrate concentration, pH, temperature were 200 g/L, 6.5, 55 °C, respectively. The peak methane production rate (MPR) of 178.4 ± 5.6 mL CH4/L-d obtained while DJW concentration, pH, temperature were 200 g/L, 7.0, 45 °C, however, peak methane yield (MY) of 23.3 ± 0.1 mL CH4/g VS obtained at 40 g/L, 7.0 and 55 °C, respectively. Effect of substrate concentration on HPR and MPR was elucidated using Monod model. Butyrate and acetate were the main soluble metabolic products. Maximal carbohydrate removal and COD reduction were achieved as 51.7 ± 0.7% and 68.3 ± 1.6%, respectively.  相似文献   

15.
A purple non-sulfur (PNS) photosynthetic bacterium was isolated from an upflow anaerobic sludge blanket (UASB) bioreactor for methane production and was identified as Rhodobacter sphaeroides KKU-PS5 (GenBank Accession no. KC481702) by 16s rRNA gene sequence analysis. Strain KKU-PS5 could utilize glucose, xylose, fructose, arabinose, malate, succinate, acetate, butyrate, lactate and D-mannitol for growth and hydrogen production. Malate was a preferred carbon source while glutamate and Aji-L (waste from the process of crystallizing monosodium glutamate) were the preferred nitrogen sources. The ability to utilize Aji-L as a low-cost nitrogen supplement for photo-biohydrogen production by the strain KKU-PS5 is considered as its desirable characteristic. The threshold substrate concentration of malate was 30 mmol/L. The optimum conditions for hydrogen production from malate were an initial pH of 7.0, FeSO4 concentration of 4 mg/L, temperature of 30 °C and light intensity of 6 klux. Under the optimum conditions, the maximum hydrogen production, the hydrogen yield (HY) and the hydrogen production rate (HPR) of 1330 mL-H2/L, 3.80 mol-H2/mol-malate, and 11.08 mL-H2/L h, respectively, were achieved. Hydrogen production under a dark/light cycle led to a decreased HY and HPR in comparison to continuous illumination.  相似文献   

16.
This study aimed to evaluate the effect of the organic loading rate (OLR) (60, 90, and 120 g Chemical Oxygen Demand (COD). L?1. d?1) on hydrogen production from cheese whey and glycerol fermentation as cosubstrates (50% cheese whey and 50% glycerol on a COD basis) in a thermophilic fluidized bed reactor (55 °C). The increase in the OLR to 90 gCOD.L?1. d?1 favored the hydrogen production rate (HPR) (3.9 L H2. L?1. d?1) and hydrogen yield (HY) (1.7 mmol H2. gCOD?1app) concomitant with the production of butyric and acetic acids. Employing 16S rRNA gene sequencing, the highest hydrogen production was related to the detection of Thermoanaerobacterium (34.9%), Pseudomonas (14.5%), and Clostridium (4.7%). Conversely, at 120 gCOD.L?1. d?1, HPR and HY decreased to 2.5 L H2. L?1. d?1 and 0.8 mmol H2. gCOD?1app, respectively, due to lactic acid production that was related to the genera Thermoanaerobacterium (50.91%) and Tumebacillus (23.56%). Cofermentation favored hydrogen production at higher OLRs than cheese whey single fermentation.  相似文献   

17.
A hydrogen producing facultative anaerobic alkaline tolerant novel bacterial strain was isolated from crude oil contaminated soil and identified as Enterobacter cloacae DT-1 based on 16S rRNA gene sequence analysis. DT-1 strain could utilize various carbon sources; glycerol, CMCellulose, glucose and xylose, which demonstrates that DT-1 has potential for hydrogen generation from renewable wastes. Batch fermentative studies were carried out for optimization of pH and Fe2+ concentration. DT-1 could generate hydrogen at wide range of pH (5–10) at 37 °C. Optimum pH was; 8, at which maximum hydrogen was obtained from glucose (32 mmol/L), when used as substrate in BSH medium containing 5 mg/L Fe2+ ion. Decrease in hydrogen partial pressure by lowering the total pressure in the fermenter head space, enhanced the hydrogen production performance of DT-1 from 32 mmol H2/L to 42 mmol H2/L from glucose and from 19 mmol H2/L to 33 mmol H2/L from xylose. Hydrogen yield efficiency (HY) of DT-1 from glucose and xylose was 1.4 mol H2/mol glucose and 2.2 mol H2/mol xylose, respectively. Scale up of batch fermentative hydrogen production in proto scale (20 L working volume) at regulated pH, enhanced the HY efficiency of DT-1 from 2.2 to 2.8 mol H2/mol xylose (1.27 fold increase in HY from laboratory scale). 84% of maximum theoretical possible HY efficiency from xylose was achieved by DT-1. Acetate and ethanol were the major metabolites generated during hydrogen production.  相似文献   

18.
Pretreatment of the empty fruit brunch (EFB) from oil palm was investigated for H2 fermentation. The EFB was hydrolyzed at various temperatures, H2SO4 concentrations, and reaction times. Subsequently, the acid-hydrolysate underwent enzymatic saccharification under various temperature, pH, and enzymatic loading conditions. Response surface methodology derived the optimum sugar concentration (SC), hydrogen production rate (HPR), and hydrogen yield (HY) as 28.30 g L−1, 2601.24 mL H2 L−1d−1, and 275.75 mL H2 g−1 total sugar (TS), respectively, at 120 °C, 60 min of reaction, and 6 vol% H2SO4, with the combined severity factor of 1.75. Enzymatic hydrolysis enhanced the SC, HY, and HPR to 34.52 g L−1, 283.91 mL H2 g−1 TS, and 3266.86 mL H2 L−1d−1, respectively, at 45 °C, pH 5.0, and 1.17 mg enzyme mL−1. Dilute acid hydrolysis would be a viable pretreatment for biohydrogen production from EFB. Subsequent enzymatic hydrolysis can be performed if enhanced HPR is required.  相似文献   

19.
A continuous stirred tank reactor (CSTR) (750 cm3 working volume) was operated with pig slurry under hyper-thermophilic (70 °C) temperature for hydrogen production. The hydraulic retention time (HRT) was 24 h and the organic loading rate was 24.9 g d−1 of volatile solid (VS). The inoculum used in the hyper-thermophilic reactor was sludge obtained from a mesophilic methanogenic reactor. The continuous feeding with active biomass (inoculum) from the mesophilic methanogenic reactor was necessary in order to achieve hydrogen production. The hyper-thermophilic reactor started to produce hydrogen after a short adapted period of 4 days. During the steady state period the mean hydrogen yield was 3.65 cm3 g−1 of volatile solid added. The high operation temperature of the reactor enhanced the hydrolytic activity in pig slurry and increased the volatile fatty acids (VFA) production. The short HRT (24 h) and the hyper-thermophilic temperature applied in the reactor were enough to prevent methanogenesis. No pre-treatment methods or other control methods for preventing methanogenesis were necessary. Hyper-thermophilic hydrogen production was demonstrated for the first time in a CSTR system, fed with pig slurry, using mixed culture. The results indicate that this system is a promising one for biohydrogen production from pig slurry.  相似文献   

20.
Hydrogen producing bacterial strain was isolated from Indian cow dung and identified of the bacterial family Enterobacteriaceae. This lab isolate was differentiated from Citrobacter Y-19 at molecular level by using RAPD, PCR based technique, and OPO-03460 and OPO-17800 RAPD marker for this specific strain (lab isolate) was identified. Fermentative studies were investigated for important parameters, starting with pH of the culture, temperature, inoculum age and inoculum volume, initial substrate concentration and different substrates. Among different substrates, dextrose and sucrose were the preferred substrates for hydrogen production. The optimal starting pH of the culture was found to be 5.0. The H2 production increased with increase in temperature up to 30 °C. The maximum value of H2 production was recorded when inoculum volume was 12.5% of the culture broth and inoculum age was 14 h. Under batch fermentation conditions, the maximum hydrogen production rate and yield were 355.2 ml l−1 h−1 and 2.1 mol/mol glucose (conversion 35%), respectively. These results indicate that this lab isolate is an ideal hydrogen producer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号