首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LiNi0.6CoxMn0.4−xO2 (x = 0.05, 0.10, 0.15, 0.2) cathode materials are prepared, and their structural and electrochemical properties are investigated using X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), differential scanning calorimetric (DSC) and charge–discharge test. The results show that well-ordering layered LiNi0.6CoxMn0.4−xO2 (x = 0.05, 0.10, 0.15, 0.2) cathode materials are successfully prepared in air at 850 °C. The increase of the Co content in LiNi0.6Mn0.4−xCoxO2 leads to the acceleration of the grain growth, the increase of the initial discharge capacity and the deterioration of the cycling performance of LiNi0.6Mn0.4−xCoxO2. It also leads to the enhancement of the ratio Ni3+/Ni2+ in LiNi0.6CoxMn0.4−xO2, which is approved by the XPS analysis, resulting in the increase of the phase transition during cycling. This is speculated to be main reason for the deteriotion of the cycling performance. All synthesized LiNi0.6CoxMn0.4−xO2 samples charged at 4.3 V show exothermic peaks with an onset temperature of larger than 255 °C, and give out less than 400 J g−1 of total heat flow associated with the peaks in DSC analysis profile, exhibiting better thermal stability. LiNi0.6Co0.05Mn0.35O2 with low Co content and good thermal stability presents a capacity of 156.6 mAh g−1 and 98.5% of initial capacity retention after 50 cycles, showing to be a promising cathode materials for Li-ion batteries.  相似文献   

2.
Recovery of hydrogen from industrial H2S waste using spinel photocatalyst was studied. Spinel metal oxide photocatalysts (CuGa2−xFexO4 for x = 0.8, 0.6 and 0.4) were synthesized by ceramic route. They were loaded with 0.5 and 1 wt% noble metal oxide, RuO2. Their XRD pattern revealed a single phase cubic spinel crystalline structure for all the catalysts. SEM displayed small size cubic particles with the particle size decreasing with the decrease in iron content. 1 wt% RuO2 loaded CuGa1.6Fe0.4O4 decomposed H2S in aqueous 0.5 M KOH solution under visible light (λ ≥ 420 nm) irradiation and generated H2 to the tune of 10,045 μmol/h, giving rise to a high quantum efficiency of 21% at 510 nm.  相似文献   

3.
K2NiF4-type structure oxides La2Cu1−xCoxO4 (x = 0.1, 0.2, 0.3) are synthesized and evaluated as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). The materials are characterized by XRD, SEM and electrochemical impedance spectrum (EIS), respectively. The results show that no reaction occurs between La2Cu1−xCoxO4 electrode and Ce0.9Gd0.1O1.95 (CGO) electrolyte at 1000 °C. The electrode forms good contact with the electrolyte after sintering at 800 °C for 4 h in air. The electrode properties of La2Cu1−xCoxO4 are studied under various temperatures and oxygen partial pressures. The optimum composition of La2Cu0.8Co0.2O4 results in 0.51 Ω cm2 polarization resistance (Rp) at 700 °C in air. The rate limiting step for oxygen reduction reaction (ORR) is the charge transfer process. La2Cu0.8Co0.2O4 cathode exhibits the lowest overpotential of about 50 mV at a current density of 48 mA cm−2 at 700 °C in air.  相似文献   

4.
A series of BiWxV1−xO4+x/2 films were coated on fluorine-doped tin oxide (FTO) glass by a polymer-assisted method and examined as photoelectrodes for photoelectrochemical measurements under Xe lamp light irradiation in a 0.5 M Na2SO4 solution. The compositions, structural, optical and morphologic properties of the films were characterized by XPS, XRD, UV–vis and SEM. The results showed the successfully synthesized films and their photoelectrochemical activities, revealing that the amount of tungsten had an important effect on the photoelectrochemical activities of BiWxV1−xO4+x/2 films and the highest incident photon to current conversion efficiency (IPCE) was obtained when x equaled 0.1.  相似文献   

5.
Sub-micro spinel LiNi0.5−xMn1.5+xO4 (x < 0.1) cathode materials powder was successfully synthesized by the ultrasonic-assisted co-precipitation (UACP) method. The structure and electrochemical performance of this as-prepared powder were characterized by powder XRD, SEM, XPS, CV and the galvanostatic charge–discharge test in detail. XRD shows that there is a small LiyNi1−yO impurity peak placed close to the (4 0 0) line of the spinel LiNi0.5−xMn1.5+xO4, and the powders are well crystallized. XPS exhibits that the Mn oxidation state is between +3 and +4, and Ni oxidation state is +2 in LiNi0.5−xMn1.5+xO4. SEM shows that the prepared powders (UACP) have the uniform and narrow size distribution which is less than 200 nm. Galvanostatic charge–discharge test indicates that the initial discharge capacities for the LiNi0.5−xMn1.5+xO4 (UACP) at C/3, 1C and 2C, are 130.2, 119.0 and 110.0 mAh g−1, respectively. After 100 cycles, their capacity retentions are 99.8%, 88.2%, and 73.5%, respectively. LiNi0.5−xMn1.5+xO4 (UACP) at C/3 discharge rate exhibits superior capacity retention upon cycling, and it also shows well high current discharge performance. CV curve implies that LiNi0.5−xMn1.5+xO4 (x < 0.1) spinel synthesized by ultrasonic-assisted co-precipitation method has both reversibility and cycle capability because of the ultrasonic-catalysis.  相似文献   

6.
A series of Au/TiO2 catalysts were prepared by photo-deposition (PD) method. Various preparation parameters, such as pH value, power of UV light and irradiation time on the characteristics of the catalysts were investigated. The catalysts were characterized by inductively-coupled plasma-mass spectrometry, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and high-resolution transmission electron microscopy. The preferential oxidation of CO in H2 stream (PROX) on these catalysts was carried out in a fixed-bed micro reactor with a feed of CO: O2: H2: He = 1: 1: 49: 49 (volume ratios) and a space velocity of 30,000 ml/g h. Limited amount of O2 was used to investigate the selectivity of O2 reacting with CO or H2. Au/TiO2 catalysts prepared by PD method showed narrow particle size distribution of gold particles within few nanometers and were found to be 1.5 nm. The particle size of gold nanoparticles deposited on the support depends on irradiation time, UV light source and pH value of preparation. The electronic structure of Au was a function of particle size. The smaller the Au particle size was, the higher the concentration of Au cation was. Using weak power of UV light, appropriate irradiation time and suitable pH value, very fine gold particles on the support could be obtained even in the powder form. The samples prepared with PD method did not need heat treatment to reduce Au cation, UV irradiation could reduce it. Therefore it is easier to have smaller particle size. Au/TiO2 catalysts prepared by PD method were very active and selective in PROX reaction. In long time test, the catalysts were stable at 80 °C for more than 60 h.  相似文献   

7.
Towards competent production of clean and electrolytic hydrogen, proton exchange membrane (PEM) water electrolysis offers several advantages, such as high purity of the produced gases, very high level of operation safety and direct storage of gases under high pressure. The work presented deals with the development of efficient PEM water electrolyzers, employing high specific surface area IrxPt1−xO2 electrocatalysts synthesized by the modified Adams fusion method. A typical three-electrode cell was used to evaluate the performance of the materials for water splitting. The performance of electrodes for oxygen evolution reaction was assessed by steady-state current–potential measurements while their electrochemical characteristics and stability were studied by cyclic voltammetry. It was found that Ir–Pt bimetallic oxide electrodes present a stable performance for oxygen evolution reaction. Their intrinsic electrocatalytic activity in combination with their large surface area and stability are quite promising for the development of economically feasible electrocatalysts for PEM water electrolyzers.  相似文献   

8.
Prospective positive-electrode (cathode) materials for a lithium secondary battery, viz., Li[Li0.2Ni0.2−x/2Mn0.6−x/2Crx]O2 (x = 0, 0.02, 0.04, 0.06, 0.08), were synthesized using a solid-state pyrolysis method. The structural and electrochemical properties were examined by means of X-ray diffraction, cyclic voltammetry, SEM and charge–discharge tests. The results demonstrated that the powders maintain the α-NaFeO2-type layered structure regardless of the chromium content in the range x ≤ 0.08. The Cr doping of x = 0.04 showed improved capacity and rate capability comparing to undoped Li[Li0.2Ni0.2Mn0.6]O2. ac impedance measurement showed that Cr-doped electrode has the lower impedance value during cycling. It is considered that the higher capacity and superior rate capability of Cr-doping samples would be ascribed to the reduced resistance of the electrode during cycling.  相似文献   

9.
A series of Au catalysts supported on CeO2–TiO2 with various CeO2 contents were prepared. CeO2–TiO2 was prepared by incipient-wetness impregnation with aqueous solution of Ce(NO3)3 on TiO2. Gold catalysts were prepared by deposition–precipitation method at pH 7 and 65 °C. The catalysts were characterized by XRD, TEM and XPS. The preferential oxidation of CO in hydrogen stream was carried out in a fixed bed reactor. The catalyst mainly had metallic gold species and small amount of oxidic Au species. The average gold particle size was 2.5 nm. Adding suitable amount of CeO2 on Au/TiO2 catalyst could enhance CO oxidation and suppress H2 oxidation at high reaction temperature (>50 °C). Additives such as La2O3, Co3O4 and CuO were added to Au/CeO2–TiO2 catalyst and tested for the preferential oxidation of CO in hydrogen stream. The addition of CuO on Au/CeO2–TiO2 catalyst increased the CO conversion and CO selectivity effectively. Au/CuO–CeO2–TiO2 with molar ratio of Cu:Ce:Ti = 0.5:1:9 demonstrated very high CO conversion when the temperature was higher than 65 °C and the CO selectivity also improved substantially. Thus the additive CuO along with the promoter and amorphous oxide ceria and titania not only enhances the electronic interaction, but also stabilizes the nanosize gold particles and thereby enhancing the catalytic activity for PROX reaction to a greater extent.  相似文献   

10.
The cathode materials Li1−x[Ni0.5Mn1.5]O4 prepared by coprecipitation from acetate solution by oxalic acid and annealing at 900 °C in air had the preferred disordered Ni and Mn on the 16d octahedral sites of a spinel structure. The coprecipitation method provides better crystallinity than the phase previously obtained by quenching from the melt. Polycrystalline octahedral-shaped particles with smooth surfaces contained trace amounts of a LiyNi1−yO impurity that introduced some Mn(III) into the spinel phase. Half-cells cycled at 0.2 C rate between 3.5 and 4.8 V versus Li exhibited a flat voltage V ≈ 4.7 V with a small step at x ≈ 0.5 and a capacity at room temperature of 130 mAh g−1 that showed no fade after 50 cycles. A small capacity fade was initiated with a cut-off voltage ≥4.9 V; a significant capacity loss between 2 and 5 C cycling rates was reversible to 134 mAh g−1 on returning to 0.1 C after 50 cycles at 10 C between 3.5 and 5.0 V.  相似文献   

11.
Photocatalytic hydrogen production was investigated over ZnS1−x−0.5yOx(OH)y-ZnO using sulfide ion (Na2S-Na2SO3) as an electron donor from NaCl saltwater. NaCl can affect markedly the activity for photocatalytic hydrogen production, depending on NaCl concentration. When NaCl concentration is lower, the activity is lower than that in pure water, whereas when NaCl concentration is higher, the activity is higher than that in pure water. NaCl decreases not only the surface charge of ZnS1−x−0.5yOx(OH)y-ZnO but also the surface hydration. When ZnS1−x−0.5yOx(OH)y-ZnO was impregnated with the electron donor (Na2S-Na2SO3), ZnO was transformed partly into ZnS. The impregnated ZnS1−x−0.5yOx(OH)y-ZnO exhibits higher activity than the non-impregnated one. The possible mechanisms were discussed.  相似文献   

12.
The CeO2/CuO and CuO/CeO2 catalysts were synthesized by the hydrothermal method and characterized via XRD, SEM, H2-TPR, HRTEM, XPS and N2 adsorption–desorption techniques. The study shows that the rod-like structure is self-assembled CeO2, and both hydrothermal time and Ce/Cu molar ratio are important factors when the particle-like CeO2 is being self-assembled into the rod-like CeO2. The CuO is key active component in the CO-PROX reaction, and its reduction has a negative influence on the selective oxidation of CO. The advantage of the inverse CeO2/CuO catalyst is that it still can provide sufficient CuO for CO oxidation before 200 °C in the hydrogen-rich reductive gasses. The traditional CuO/CeO2 catalyst shows better activity at lower temperature and the inverse CeO2/CuO catalysts present higher CO2 selectivity when the CO conversion reaches 100%. The performance of mixed sample verifies that they might be complementary in the CO-PROX system.  相似文献   

13.
Quantitative phase analysis of Cu(In1−xGax)Se2 (CIGS) thin film grown over Mo coated soda lime glass substrates was studied by Rietveld refinement process using room temperature X-ray data at θ-2θ mode. Films were found to contain both stoichiometric Cu(In1−xGax)Se2 and defect related Cu(In1−xGax)3Se5 phases. Best fitting was obtained using crystal structure with space group I-42d for Cu(In1−xGax)Se2 and I-42m for Cu(In1−xGax)3Se5 phase. The effects of Ga/III (=Ga/In+Ga=x) ratio and Se flux during growth over the formation of Cu(In1−xGax)3Se5 defect phase in CIGS was studied and the correlation between quantity of Cu(In1−xGax)3Se5 phase and solar cell performance is discussed.  相似文献   

14.
A series of LaNi1−xFexO3 (x = 0.0, 0.2, 0.4, 0.7, and 1.0) perovskites were synthesized and characterized by X-ray diffraction (XRD), N2 physisorption, scanning electron microscopy (SEM), H2-temperature-programmed reduction (H2-TPR), and X-ray photoelectron spectroscopy (XPS). The perovskites were investigated for selective catalytic reduction of NOx by hydrogen (H2-SCR). It is shown that Fe addition into LaNiO3 leads to a promoted efficiency of NOx removal, as well as a high stability of perovskite structure. Moreover, easy reduction of Ni3+ to Ni2+ with the aid of appropriate Fe component mainly accounts for the enhanced activity. Meanwhile, deactivation of the sulfated catalysts is due to that sulfates mainly deposit on active Ni component while doping of Fe can protect Ni to some extent at the expense of partial sulfation.  相似文献   

15.
In this work structural and transport properties of layered Li1+x(Mn1/3Co1/3Ni1/3)1−xO2 oxides (x = 0; 0.03; 0.06) prepared by a “soft chemistry” method are presented. The excessive lithium was found to significantly improve transport properties of the materials, a corresponding linear decrease of the unit cell parameters was observed. The electrical conductivity of Li1.03(Mn1/3Co1/3Ni1/3)0.97O2 composition was high enough to use this material in a form of a pellet, without any additives, in lithium batteries and characterize structural and transport properties of deintercalated Li1.03−y(Mn1/3Co1/3Ni1/3)0.97O2 compounds. For deintercalated samples a linear increase of the lattice parameter c together with a linear decrease of the parameter a with the increasing deintercalation degree occurred, but only up to 0.4-0.5 mol of extracted lithium. Further deintercalation showed a reversal of the trend. Electrical conductivity measurements performed of Li1.03−y(Mn1/3Co1/3Ni1/3)0.97O2 samples (y = 0.1; 0.3; 0.5; 0.6) showed an ongoing improvement, almost two orders of magnitude, in relation to the starting composition. Additionally, OCV measurements, discharge characteristics and lithium diffusion coefficient measurements were performed for Li/Li+/Li1.03−y(Mn1/3Co1/3Ni1/3)0.97O2 cells.  相似文献   

16.
We investigated the effect of CO2 on layered Li1+zNi1−xyCoxMyO2 (M = Al, Mn) cathode materials for lithium ion batteries which were prepared by solid-state reactions. Li1+zNi(1−x)/2CoxMn(1−x)/2O2 (Ni/Mn mole ratio = 1) singularly exhibited high storage stability. On the other hand, Li1+zNi0.80Co0.15Al0.05O2 samples were very unstable due to CO2 absorption. XPS and XRD measurements showed the reduction of Ni3+ to Ni2+ and the formation of Li2CO3 for Li1+zNi0.80Co0.15Al0.05O2 samples after CO2 exposure. SEM images also indicated that the surfaces of CO2-treated samples were covered with passivation films, which may contain Li2CO3. The relationship between CO2-exposure time and CO32− content suggests that there are two steps in the carbonation reactions; the first step occurs with the excess Li components, Li2O for example, and the second with LiNi0.80Co0.15Al0.05O2 itself. It is well consistent with the fact that the discharge capacity was not decreased and the capacity retention was improved until the excess lithium is consumed and then fast deterioration occurred.  相似文献   

17.
The Ni catalysts supported on a new structure with zirconia nanoparticles highly dispersed on the partly damaged clay layers has been prepared by the incipient wetness impregnation method and the new structure of the support has been prepared in one pot by the hydrothermal treatment of the mixture of the clay suspension and the ZrO(NO3)2 solution. The catalytic performances for the CO and CO2 methanation on the catalysts have been investigated at a temperature range from 300 °C to 500 °C at atmospheric pressure. The catalysts and supports have been characterized by X-ray diffraction (XRD), transmittance electron microscopy (TEM), H2 temperature-programmed reduction (H2-TPR), nitrogen adsorption–desorption, and thermogravimetry and differential thermal analysis (TG-DTA). It is found that the zirconia-modified clays have the typical bimodal pore size distribution. Most of the pores with the sizes smaller than 10 nm are resulted from the zirconia pillared clays and the mesopores with the sizes larger than 10 nm and the macropores with the sizes larger than 50 nm are resulted from the partly damaged clay layers. The bimodal pore structure is beneficial to the dispersion of Ni on the layers of the zirconia-modified clays and the increase in Ni loading. The zirconia nanoparticles are highly dispersed on the partly damaged clay layers. Nickel oxide in cubic phase is the only Ni species that can be detected by XRD. The nickel oxide nanoparticles with the sizes of 12 nanometers or more are well dispersed on the zirconia-modified clay layers, which are observed to be buried in the stack layers of zirconia. The presence of nickel oxide in six different forms could be perceived on the new structure. Five of them except the Ni species that forms the spinel phase with Al in clays can be reduced to the active Ni species for the CO and CO2 methanation. But the activity of the Ni species is different, which is associated with the chemical environment at which the Ni species is located. The catalyst with the higher zirconia content, which also has the larger specific surface area and pore volume, exhibits the better catalytic performance for the CO or CO2 methanation. Zirconia in the catalyst is responsible for the dispersion of the Ni species, and it prevents the metallic Ni nanoparticles from sintering during the process of the reaction. In addition, it is also responsible for the reduction of the inactive carbon deposition. The catalyst with 15 wt.% zirconia content has the highest CO conversion of about 100% and the highest methane selectivity of about 93% at 450 °C for CO methanation, and the catalyst with 20% zirconia content has the CO2 conversion of about 80% and the highest methane selectivity of about 99% for CO2 methanation at 350 °C. The catalyst with 15 wt.% zirconia possesses promising stability and no distinct deactivation could be perceived after reaction for 40 h. This new catalyst has great potential to be used in the conversion of the blast furnace gas (BFG) and the coke oven gas (COG) to methane.  相似文献   

18.
The hydrogen photo-evolution was successfully achieved in aqueous (Fe1−xCrx)2O3 suspensions (0 ≤ x ≤ 1). The solid solution has been prepared by incipient wetness impregnation and characterized by X-ray diffraction, BET, transport properties and photo-electrochemistry. The oxides crystallize in the corundum structure, they exhibit n-type conductivity with activation energy of ∼0.1 eV and the conduction occurs via adiabatic polaron hops. The characterization of the band edges has been studied by the Mott Schottky plots. The onset potential of the photo-current is ∼0.2 V cathodic with respect to the flat band potential, implying a small existence of surface states within the gap region. The absorption of visible light promotes electrons into (Fe1−xCrx)2O3-CB with a potential (∼−0.5 VSCE) sufficient to reduce water into hydrogen. As expected, the quantum yield increases with decreasing the electro affinity through the substitution of iron by the more electropositive chromium which increases the band bending at the interface and favours the charge separation. The generated photo-voltage was sufficient to promote simultaneously H2O reduction and SO32− oxidation in the energetically downhill reaction (H2O + SO32− → H2 + SO42−, ΔG = −17.68 kJ mol−1). The best activity occurs over Fe1.2Cr0.8O3 in SO32− (0.1 M) solution with H2 liberation rate of 21.7 μmol g−1 min−1 and a quantum yield 0.06% under polychromatic light. Over time, a pronounced deceleration occurs, due to the competitive reduction of the end product S2O62−.  相似文献   

19.
The high-temperature cubic phase of SrCoO3−δ is a promising cathode material for solid oxide fuel cells (SOFC) due to its high electrical conductivity and oxygen permeation flux. However, this phase is not stable below 900 °C where a 3C-cubic to 2H-hexagonal phase transition takes place when the sample is slowly cooled down. In this work we have stabilized a 3C-tetragonal P4/mmm structure for SrCo1−xNbxO3−δ with x = 0.05. We have followed the strategy consisting of introducing a highly-charged cation at the Co sublattice, in order to avoid the stabilization of the unwanted 2H structure containing face-sharing octahedra. The characterization of this oxide included X-ray (XRD) and neutron powder diffraction (NPD) experiments. SrCo0.95Nb0.05O3−δ adopts a tetragonal superstructure of perovskite with a = a0, c = 2a0 (a0 ≈ 3.9 Å) defined in the P4/mmm space group containing two inequivalent Co positions. Flattened and elongated (Co,Nb)O6 octahedra alternate along the c axis sharing corners in a three-dimensional array (3C-like structure). In the test cell, the electrodes were supported on a 300-μm-thick pellet of the electrolyte La0.8Sr0.2Ga0.83Mg0.17O3−δ (LSGM). The test cells gave a maximum power density of 0.4 and 0.6 W/cm2 for temperatures of 800 and 850 °C, respectively, with pure H2 as fuel and air as oxidant. The good performance of this material as a cathode is related to its mixed electronic-ionic conduction (MIEC) properties, which can be correlated to the investigated structural features: the Co3+/Co4+ redox energy at the top of the O-2p bands accounts for the excellent electronic conductivity, which is favored by the corner-linked perovskite network. The considerable number of oxygen vacancies, with the oxygen atoms showing high displacement factors suggests a significant ionic mobility.  相似文献   

20.
Pt–Cu catalysts supported on Al2O3 and Nb2O5 were studied for use in selective CO oxidation. The addition of copper enhanced the activity and selectivity of Pt–Cu/Nb2O5 at lower temperatures when compared to Pt/Nb2O5. On the other hand, copper addition was not beneficial in the case of Al2O3 supported catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号