首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
An experimental study devoted to the continuous separation of hydrogen from its mixtures with methane in continuous regime is presented. The study was carried out in a single-vessel reactor divided into two interconnected adjoining chambers, operating as fluidized beds and with a continuous flow of solids between them. The process is based on iron oxide being selectively reduced or oxidized, depending on the redox nature of the gas stream being fed to the respective chamber (steam-iron process or SIP). Conditions to minimize gas leakage between the interconnected beds, avoiding insufficient circulation of solids, have been experimentally determined. The effects of different interconnecting designs, spatial gas velocities and partial pressures of reactants have been tested. Also the effects of several operating parameters (primarily hydrogen content in the inlet gas stream and spatial velocities) on process efficiency have been analyzed. Accordingly, a final configuration has been proposed for stable hydrogen separation and tested for several hours of time on stream.  相似文献   

2.
This research is devoted to the use of ethanol (i.e. bio-ethanol) in the combined production and purification of hydrogen by redox processes. The process has been studied in a single lab scale fixed bed reactor. Iron oxides, apart from their remarked redox behavior, exert an important catalytic role allowing the complete decomposition of ethanol at temperatures in the range from 625 to 750 °C. The resulting gas stream (mainly H2 and CO) reduces the solid to metallic iron. During a subsequent oxidation with steam, the solid can be regenerated to magnetite producing high purity hydrogen (suitable to be used in PEM fuel cells). Even though small amounts of coke are deposited during the reduction step, this is barely gasified by steam during the oxidation step (detection of COx in concentrations lower than 1 ppm). Influence of parameters like temperature, ethanol partial pressure and alternate cycles' effect has been studied in order to maximize the production of pure hydrogen.  相似文献   

3.
Fe2O3 is currently the most proper active metal oxide for chemical looping hydrogen generation (CLHG). However, supports are necessary to improve the reactivity and redox stability. CeO2 can enhance the oxygen mobility, leading to high redox reactivity and carbon deposition resistance, which can be an excellent alternative support for oxygen carriers. In this paper, Fe2O3/CeO2 oxygen carriers prepared by the co-precipitation method with different Fe2O3 loadings were investigated on a batch fluidized bed regarding the hydrogen yield and purity, redox reactivity and stability in CLHG with CO as fuel. The results showed that Fe6Ce4 is the best given comprehensive performance with no CO or CO2 observed in the obtained hydrogen (detection limit 0.01% in volume). The oxygen mobility property for the reducible support CeO2 and the physical contact between un-integrated Fe2O3 and CeO2 could improve the reduction of Fe2O3. In addition, the formation of the hematite-like solid solution and perovskite-type CeFeO3 could bring about abundant oxygen vacancies and promote the oxygen mobility, which contributes to the elimination of carbon deposition, counteracts the negative effect of serious sintering and guarantees the reactivity and redox stability of the Fe2O3/CeO2 oxygen carriers. The Fe2O3/CeO2 oxygen carriers were characterized by carbon monoxide temperature-programmed reduction measurement and X-ray diffraction patterns, and Fe6Ce4 was also selected to be characterized by scanning electron microscopy images and energy dispersive X-ray spectrometer analysis.  相似文献   

4.
Hydrogen production from natural gas using a Ni-based catalyst and its later hydrogen storage with some synthetic and natural iron oxides are presented. The Ni-based catalyst showed high methane conversion, close to the equilibrium one, when producing hydrogen from methane through catalytic partial oxidation (CPO) and wet-CPO with a low steam to carbon ratio (0.5). The solid solution formation observed in the Ni-based catalyst could have enhanced its stability. The iron oxides capacity for hydrogen storage was analysed with reduction–oxidation cycles at 973 K and atmospheric pressure. The natural oxides presented structural modifications, mainly due to sinterization, which negatively affected their storage capacity and stability.  相似文献   

5.
An improved design for radiation absorption and heat flow into materials with low thermal conductivity is demonstrated. The design was developed for application in fixed bed two step solar water splitting redox reactors. The fixed bed was assumed to be made from porous ceramic. The low thermal conductivity of the porous ceramic redox material is compensated for by changing the profile of the fixed bed. The profiling used was wedges cut into the material which allows concentrated solar radiation to be incident on a larger area of redox material than for a flat monolith design. The design is demonstrated to efficiently transfer heat to the bulk and greatly reduce re-radiation. For a wedge 9 cm in depth and 1.6 cm wide at the opening, heated with 500 kW m−2 incident radiation for 300 s, approximately double the amount of radiation is absorbed. The effects of thermal conductivity, emissivity and scaling on the efficiency of the design were investigated. The radiation absorption performance improved when scaled up. The improvement of the design over a flat plain bed is greater for lower emissivity. The improvement provided by the wedge design was found to decrease for increasing thermal conductivity, and eventually for high conductivity values it reduced performance. Using this method a larger amount of material with low thermal conductivity can be heated with the same power input and reduced radiation losses. The heat flow simulations were then coupled to an Arrhenius rate equation to investigate the possible improvement to the reaction efficiency and yield offered by the wedge design. Over a time of 300 s the efficiency and yield were seen to be approximately a factor of 4 times higher in the wedge case. Finally a concentrated solar cavity reactor based on the design is proposed.  相似文献   

6.
The redox performance of pure iron oxide (Fe2O3) and iron oxide modified with ceria (CeO2) and/or zirconia (ZrO2) as an oxygen carrier was investigated for hydrogen (H2) production through a methane-steam redox process. The addition of both CeO2 and ZrO2 were found to be a more effective modification of Fe2O3 than the addition CeO2 or ZrO2 alone. It was found that the reducibility of Fe2O3 was enhanced by CeO2 and the thermal stability of Fe2O3 was improved by ZrO2. These results, therefore, led to the conclusion of the synergistic effect in the Fe2O3-CeO2-ZrO2 mixed oxide. As a result, both the redox activity and the thermal stability were significantly improved, and increases in H2 yield and purity could be maintained by the modification. The redox temperature was found to have a significant effect on redox performance. The production of H2 was considerably improved when the redox temperature was increased from 650 to 750 °C. The ZrO2 concentration in Fe2O3-CeO2-ZrO2 mixed oxide samples was also found to influence performance with the highest H2 yield observed at a ZrO2 concentration of 75 wt.%. Although all materials tested showed a reduction in surface area in the first redox cycle, the change in surface area in subsequent cycles was found to be smaller and the yield of H2 could be maintained at a constant level over a longer period for the mixed oxide containing 75 wt.% ZrO2.  相似文献   

7.
In this work, iron films were deposited on fluorine-tin-oxide coated glass substrate using radio frequency sputtering. Self-oriented iron oxide nanorod array thin films were obtained by anodizing the sputtered films. Anodization was carried out in an ethylene glycol solution containing 0.1 M NH4F and various content of water. We studied the mechanism of anodization of iron thin films, and investigated the effects of some parameters on the properties of the iron oxide thin films.  相似文献   

8.
The present work proposes the exploitation of solar energy for the dissociation of water and production of hydrogen via an integrated thermo-chemical reactor/receiver system. The basic idea is the use of multi-channelled honeycomb ceramic supports coated with active redox reagent powders, in a configuration similar to that encountered in automobile exhaust catalytic aftertreatment.Iron-oxide-based redox materials were synthesized, capable to operate under a complete redox cycle: they could take oxygen from water producing pure hydrogen at reasonably low temperatures (800 °C) and could be regenerated at temperatures below 1300 °C. Ceramic honeycombs capable of achieving temperatures in that range when heated by concentrated solar radiation were manufactured and incorporated in a dedicated solar receiver/reactor. The operating conditions of the solar reactor were optimised to achieve adjustable, uniform temperatures up to 1300 °C throughout the honeycomb, making thus feasible the operation of the complete cycle by a single solar energy converter.  相似文献   

9.
Stepwise production of syngas and hydrogen from ZrO2-supported CeO2 through methane reforming and water splitting was investigated in order to find proper operating conditions under which carbon deposition could be minimized. Recommendable operating temperature and time were 1073 K and 30 min for both the methane reforming and the water splitting. Even though the H2/CO ratio during the methane reforming was maintained close to the desired ratio of 2, undesirable methane cracking occurred to a small extent and further reduction of Ce2O3 to metallic Ce by CH4 and H2 occurred to some extent. When the methane reforming-water splitting cyclic operations were repeated, the yields of syngas and hydrogen decreased considerably from the first cycle to the second cycle, but from the second cycle to the fifth cycle the gas yields were maintained nearly constant. As the CeO2 content in the sample increased, the gas yields per mole of CeO2 decreased but the gas productions per gram of sample increased.  相似文献   

10.
This study deals with solar hydrogen production from the two-step iron oxide thermochemical cycle (Fe3O4/FeO). This cycle involves the endothermic solar-driven reduction of the metal oxide (magnetite) at high temperature followed by the exothermic steam hydrolysis of the reduced metal oxide (wustite) for hydrogen generation. Thermodynamic and experimental investigations have been performed to quantify the performances of this cycle for hydrogen production. High-temperature decomposition reaction (metal oxide reduction) was performed in a solar reactor set at the focus of a laboratory-scale solar furnace. The operating conditions for obtaining the complete reduction of magnetite into wustite were defined. An inert atmosphere is required to prevent re-oxidation of Fe(II) oxide during quenching. The water-splitting reaction with iron(II) oxide producing hydrogen was studied to determine the chemical kinetics, and the influence of temperature and particles size on the chemical conversion. A conversion of 83% was obtained for the hydrolysis reaction of non-stoichiometric solar wustite Fe(1−y)O at 575 °C.  相似文献   

11.
In this paper, a novel method for producing hydrogen from water with Fe as a reductant promoted by HS under mild hydrothermal conditions was proposed. Results showed that hydrogen production significantly increased in the presence of HS compared to that in the absence of HS. The obvious hydrogen production was achieved in a low reaction temperature of 250 °C and a very short reaction time (less than 2 h). The maximum yield of hydrogen production, which was defined as the percentage of produced hydrogen amount to theoretical one according to completive oxidation of Fe to Fe3O4 to produce hydrogen from water, was 34% at 300 °C. HS may act as a catalyst and a possible HS-catalyzed mechanism was proposed. This process may provide a promising solution for biomass-driven hydrogen production from water combined with the process of reducing iron oxide into their zero-valent state by bio-driven chemicals, such as glycerin.  相似文献   

12.
Chemical-looping hydrogen generation (CLHG) is a novel technology for hydrogen production with inherent separation of CO2. Three oxygen carriers Fe2O3 using inert materials Al2O3 or TiO2 as support were prepared by mechanical-mixing method, i.e., Fe90Al10 (90%Fe2O3 + 10%Al2O3), Fe60Al40 (60%Fe2O3 + 40%Al2O3) and Fe60Ti40 (60%Fe2O3 + 40%Al2O3). Reactivity of the three oxygen carriers was first determined under CO reduction, steam oxidation and air oxidation atmospheres at 900 °C in a thermogravimetric analyzer. Then experiments to simulate the CLHG process were carried out in a batch fluidized bed. In the fluidized bed, all of the three oxygen carriers showed good reactivity over the multi-cycle experiments at 900 °C, and Fe60Al40 had the highest hydrogen yield. The reactivity of the oxygen carrier supported on Al2O3 was higher than that on TiO2, which interacted with iron oxide forming FeTiO3. The reactivity of Fe60Al40 was better than that of Fe90Al10. No deterioration of the oxygen carrier occurred after the multiple cycles, but for Fe90Al10 some agglomeration was detected. At 600-900 °C, higher temperature favored deeper reduction of iron oxide and increased the hydrogen production, while carbon deposition in the reduction period was suppressed with the rise of temperature. In the reduction, the conversion of fuel gas was constrained by thermodynamics in a single-stage reactor, and a compact fuel reactor was proposed for a full conversion of gaseous fuels.  相似文献   

13.
Iron oxide has been widely studied in chemical looping hydrogen generation (CLHG) process as an oxygen carrier, but fast decline of its activity in redox cycles due to sintering and agglomeration is one of the main drawbacks. In this work, the colloidal crystal templated (CCT) method was applied to synthesize Fe2O3/CeO2 oxygen carrier and the mole ratio of Fe/Ce was 8:2, aiming to inhibit adjacent grains from agglomerating and improve the contact between the fuel gas and the oxygen carrier. The redox performances were evaluated with CO as fuel in a batch fixed bed reactor for 20 redox cycles, with oxygen carriers prepared by co-precipitation (CP) and sol-gel (SG) methods as references. X-ray diffraction (XRD), field emission scanning electron microscopy (SEM), and H2-temperature programmed reduction (H2-TPR) were used for characterization. The results showed that the calcination temperature lower than 750 °C was suitable for the CCT. The redox experiments showed that the H2 yield and the redox stability for the oxygen carrier prepared by CCT were higher than those by co-precipitation and sol-gel methods. The H2 yield of CCT oxygen carrier kept stable from the 3rd cycle and was 8.5 mmol/gOC in the 20th cycle. The pore structures resulting from CCT were different from another two oxygen carriers before and after the cycles, but maintained well through SEM images, leading to high activity and stability during redox cycles. The crystallite sizes of Fe2O3 and CeO2 before and after redox cycles were the smallest for the CCT oxygen carrier from XRD patterns. In addition, H2-TPR demonstrated that CCT oxygen carrier exhibited the highest reactivity.  相似文献   

14.
Development of cost-effective catalyst material with enhanced activity for hydrogen generation is highly desirable for hydrogen powered portable applications. In this work, molybdenum disulfide (MoS2) incorporated on palm oil waste activated carbon (POAC) was used as a novel catalyst for enhanced hydrogen production by sodium borohydride (NaBH4) hydrolysis. Hydrothermally synthesized MoS2/POAC catalyst composite was characterized by SEM, EDX, XRD, FTIR, Raman, TGA and Surface area analysis. Characterization studies revealed the uniform and complete synthesis of MoS2 nanoparticles on the POAC surface with crystallite size of 18.2 nm. The catalyst composite showed enhancement in thermal stability and reduction in specific surface area as compared with POAC. Hydrogen generation investigations showed ideal weight ratio of composite catalyst as 10:1 (w/w of POAC: MoS2) and optimal catalyst to feed weight ratio as 0.07. MoS2/POAC catalyst with 10 wt% of POAC loading recorded the maximum catalytic activity of 1170.66 mL/g min with lower activation energy of 39.1 kJ/mol. The catalyst composite exhibited virtuous reusability with a 28% loss in activity for nine cycle regeneration run. Thus, MoS2/POAC catalyst system is highly attractive for commercial applicability and is a potential candidate for enhanced hydrogen production through NaBH4 hydrolysis.  相似文献   

15.
Solar redox reforming is a process that uses solar radiation to drive the production of syngas from natural gas. This approach caught attention in recent years, because of substantially lower reduction temperatures compared to other redox cycles. However, a detailed and profound comparison to conventional solar reforming has yet to be performed. We investigate a two-step redox cycle with iron oxide and ceria as candidates for redox materials. Process simulations were performed to study both steam and dry methane reforming. Conventional solar reforming of methane without a redox cycle, i.e. on an established catalyst was used as reference. We found the highest efficiency of a redox cycle to be that of steam methane reforming with iron oxide. Here the solar-to-fuel efficiency is 43.5% at an oxidation temperature of 873 K, a reduction temperature of 1190 K, a pressure of 3 MPa and a solar heat flux of 1000 kW/m2. In terms of efficiency, this process appears to be competitive with the reference process. In addition, production of high purity H2 or CO is a benefit, which redox reforming has over the conventional approach.  相似文献   

16.
Magnesium hydride (MgH2) is a promising on-board hydrogen storage material due to its high capacity, low cost and abundant Mg resources. Nevertheless, the practical application of MgH2 is hindered by its poor dehydrogenation ability and cycling stability. Herein, the influences and mechanisms of thin pristine magnesium oxide (MgO) and transition metals (TM) dissolved Mg(TM)O layers (TM = Ti, V, Nb, Fe, Co, Ni) on hydrogen desorption and reversible cycling properties of MgH2 were investigated using first-principles calculations method. The results demonstrate that either thin pristine MgO or Mg(TM)O layer weakens the MgH bond strength, leading to the decreased structural stability and hydrogen desorption energy of MgH2. Among them, the Mg(Nb)O layer exhibits the most pronounced destabilization effect on MgH2. Moreover, the Mg(Nb)O layer presents a long-acting confinement effect on MgH2 due to the stronger interfacial bonding strength of Mg(Nb)O/MgH2 and the lower brittleness of Mg(Nb)O itself. Further analyses of electronic structures indicate that these thin oxide layers coating on MgH2 surface reduce the bonding electron number of MgH2, which essentially accounts for the weakened MgH bond strength and enhanced hydrogen desorption properties of modified MgH2 systems. These findings provide a new avenue for enhancing the hydrogen desorption and reversible cycling properties of MgH2 by designing and adding suitable MgO based oxides with high catalytic activity and low brittleness.  相似文献   

17.
Metallic photoelectrocatalysts possess a wide light absorption range and the fast hydrogen evolution reaction (HER) kinetics, which can be used as the next generation of catalysts towards photoelectrocataytic HER. In this work, molybdenum nitride has been fabricated via an in-suit growth method on metal molybdenum substance (Mo3N2/Mo foil). The metallic and optical property of Mo3N2 was confirmed by the DFT calculations and experimental results from UV–visible absorption spectrum and valence X-ray photoelectron spectroscopy spectrum. Photocatalytic HER rate of Mo3N2 reached to 158.78 μmol h?1 g?1. Furthermore, Mo3N2–MoS2/Mo foil was prepared to improve photoelectrocatalytic performance. Herein, a suitable energy band alignment for Mo3N2–MoS2/Mo foil was proposed based on experiments and DFT calculations, and the formation of a heterojunction (Mo3N2–MoS2) effectively suppressed the recombination of photo-generated carriers. The results of photoelectrocatalytic experiments suggested that the photocurrent density of Mo3N2–MoS2/foil was effectively enhanced about 1.5 times than that of simplex Mo3N2/Mo foil. The electrochemical experiments (LSV and EIS) indicated that the metallic nature of Mo3N2 was also beneficial to electrocatalytic HER, and the overpotential of Mo3N2–MoS2/Mo foil at 10 mA cm?2 was ?173 mV. This work provides a potential candidate for photoelectrocatalytic electrodes.  相似文献   

18.
The development of a safe and efficient method for hydrogen storage is essential for the use of hydrogen with fuel cells for vehicular applications. Hollow glass microspheres (HGMs) have characteristics suitable for hydrogen storage and are expected to be a potential hydrogen carrier to be used for energy release applications. The HGMs with 10–100 μm diameters, 100–1000 Å pore width and 3–8 μm wall thicknesses are expected to be useful for hydrogen storage. In our research we have prepared HGMs from amber glass powder of particle size 63–75 μm using flame spheroidisation method. The HGMs samples with magnesium and iron loading were also prepared to improve the heat transfer property and thereby increase the hydrogen storage capacity of the product. The feed glass powder was impregnated with calculated amount of magnesium nitrate hexahydrate salt solution to get 0.2–3.0 wt% Mg loading on HGMs. Required amount of ferrous chloride tetrahydrate solution was mixed thoroughly with the glass feed powder to prepare 0.2–2 wt% Fe loaded HGMs. Characterizations of all the HGMs samples were done using FEG-SEM, ESEM and FTIR techniques. Adsorption of hydrogen on all the Fe and Mg loaded HGMs at 10 bar pressure was conducted at room temperature and at 200 °C, for 5 h. The hydrogen adsorption capacity of Fe loaded sample was about 0.56 and 0.21 weight percent for Fe loading 0.5 and 2.0 weight percentage respectively. The magnesium loaded samples showed an increase of hydrogen adsorption from 1.23 to 2.0 weight percentage when the magnesium loading percentage was increased from 0 to 2.0. When the magnesium loading on HGMs was increased beyond 2%, formation of nano-crystals of MgO and Mg was seen on the HGMs leading to pore closure and thereby reduction in hydrogen storage capacity.  相似文献   

19.
Experiments to investigate the catalytic pyrolysis of methane using an iron ore-based catalyst were carried out to optimize catalytic activity and examine the purity of the carbon produced from the process for the first time. Ball milling of the iron ore at 300 rpm for varying times – from 30 to 330 min – was studied to determine the effect of milling time on methane conversion. Optimal milling for 270 min led to a five-fold increase in methane conversion from ca. 1%–5%. Further grinding resulted in a decline of methane conversion to 4% shown by SEM to correspond to an increase in particle size caused by agglomeration. Data from Raman and Mössbauer spectroscopy and H2 temperature programmed reduction indicated a change in phase from magnetite to maghemite and hematite (at the particle surface) as the grinding time increased. Analysis of the carbon produced as a byproduct of the reaction indicated a highly pure material with the potential to be used as an additive for steel production.  相似文献   

20.
Absorption of hydrogen in gradually tensile strained Armco iron and high-carbon steel, cathodically charged in 0.1 M NaOH solution, was studied using the electrochemical permeation and desorption techniques. Measurements of hydrogen permeation through specimens in the form of a membrane allowed determining the lattice diffusivity and concentration of hydrogen (diffusible hydrogen). The lattice diffusivity of hydrogen in iron (D = 6.2 × 10−5 cm2/s) was about 280 times higher than that in high-carbon steel (D = 2.2 × 10−7 cm2/s). In turn, a detailed analysis of the desorption rate of hydrogen from previously hydrogen charged and strained, cylindrical specimens made it possible to characterize hydrogen reversibly attached to traps. This trapped hydrogen made nearly a whole and a majority (from 70% to 85%, depending on strain) of the reversibly absorbed hydrogen in iron and high-carbon steel, respectively. In both studied materials, the amount of the trapped hydrogen strongly increased with strain. Moreover, in contrast to the diffusible hydrogen, evenly distributed in the charged specimen, the trapped hydrogen was mainly located within a subsurface region of the specimen. The estimated thickness of this subsurface region in iron was about 0.44 mm, whereas that in high-carbon steel was only about 0.017 mm. Consequently, the subsurface concentration of hydrogen in high-carbon steel was extremely high. It may be one of the reasons for more intensive hydrogen embrittlement of high-carbon (high-strength) steels in comparison with that of iron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号