首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, Fe2O3–SO42−/Nafion® composite membranes were prepared by a solution casting method. The physico-chemical properties of composite membranes were characterized by X-ray diffraction (XRD), SEM–EDX and thermogravimetric analysis (TGA). The water uptake ability, proton conductivity, and methanol permeability of the composite membranes were evaluated and compared with the recast Nafion® membrane. The results showed that the proton conductivity and the water uptake of the composite membranes were slightly higher than that of the recast Nafion® membrane. The composite membrane containing 5 wt.% Fe2O3–SO42- showed superior ability to suppress methanol crossover, and it further improved the direct methanol fuel cell (DMFC) performances with both 1 M and 5 M methanol feeding, compared with the recast Nafion® membrane. The preliminary 30 h lifetime test of the DMFC with the composite membrane with 5% Fe2O3–SO42 indicated that the composite membrane is stable working at the real DMFC operating conditions at least during the test. These results suggest the applicability of the composite membranes in DMFCs.  相似文献   

2.
Recast Nafion® composite membranes containing ZrO2–SiO2 binary oxides with different Zr/Si ratios are investigated for polymer electrolyte membrane fuel cells (PEMFCs) at temperatures above 100 °C. Fine particles of the ZrO2–SiO2 binary oxides, same as an inorganic filter, are synthesized from a sodium silicate and a carbonate complex of zirconium by a sol–gel technique. The composite membranes are prepared by blending a 10% (w/w) Nafion®-water dispersion with the inorganic compound. All composite membranes show higher water uptake than unmodified membranes, and the proton conductivity increases with increasing zirconia content at 80 °C. By contrast, the proton conductivity decreases with zirconia content for the composite membranes containing binary oxides at 120 °C. The composite membranes are tested in a 9-cm2 commercial single cell at both 80 °C and 120 °C in humidified H2/air under different relative humidity (RH) conditions. Composite membrane containing the ZrO2–SiO2 binary oxide (Zr/Si = 0.5) give the best performance of 610 mW cm−1 under conditions of 0.6 V, 120 °C, 50% RH and 2 atm.  相似文献   

3.
A novel material for hydrogen generation with high capacity of H2 generation has been successfully prepared by ball milling the mixture of Al and home-made fresh Li3AlH6 powder. Its theoretical capacity of hydrogen released is higher than that of pure Al. Results obtained have shown conversion efficiency of Al–Li3AlH6 composite can be close to 100% by increasing the content of Li3AlH6. When the content of Li3AlH6 is 20 wt%, the maximum hydrogen generation rate and hydrogen yield are 2737.6 mL g−1 min−1 and 1513.1 mL g−1, respectively, at room temperature. By XRD, SEM analyses and reaction heat measurements, it demonstrates that the additive Li3AlH6 can provide an additional source of H2 and an alkaline environment (LiOH) as well as additional heat to promote the Al/H2O reaction. Therefore, the Al–Li3AlH6 composite has a very high activity and high capacity of hydrogen released.  相似文献   

4.
The effect of MgFe2O4 on the hydrogen storage properties of the composite Na3AlH64LiBH4 was studied for the first time, where it was found that MgFe2O4 addition decreased the onset desorption temperature of Na3AlH64LiBH4. Hydrogen (~9.5 wt%) was released in three stages and the dehydrogenation temperatures were reduced to 80 °C, 350 °C, and 430 °C for the first, second, and third stage, respectively. The absorption kinetics of Na3AlH64LiBH4 was also significantly improved due to the catalytic effect of MgFe2O4. Using Kissinger analysis, the apparent activation energies of decomposition of the Li3AlH6 and NaBH4 stages in Na3AlH64LiBH4-10 wt% MgFe2O4 were calculated to be 72 and 141 kJ/mol, respectively. These values were considerably lower than the corresponding values for the undoped composite. X-ray diffraction analysis revealed the formation of new products such as MgO and Fe during the heating process. Our results suggest that MgFe2O4 enhanced the hydrogen storage properties of Na3AlH64LiBH4 through the formation of active species, such as MgO and Fe.  相似文献   

5.
A novel composite oxide Ce(Mn,Fe)O2-La(Sr)Fe(Mn)O3 (CFM-LSFM) was synthesized and evaluated as both anode and cathode materials for solid oxide fuel cells. The cell with CFM-LSFM electrodes was fabricated by tape-casting and screen printing technique. The power-generating performance of this cell was comparable to that of the cell with Ni-SSZ anode and LSM-SSZ cathode. During the 120 h long-term test in hydrogen at 800 °C, the performance increased by 8.6% from 256 to 278 mW cm−2. This was attributed to the decrease of polarization resistance and ohmic resistance during the test. The XRD results showed the presence of Fe, MnO and some unknown second phases after heat-treating the electrode materials in H2 which may be beneficial to the anode electrochemical process. The gradual decrease of polarization resistance as increasing the current density possibly resulted from the increasing content of water in the anode.  相似文献   

6.
One of the major challenges for direct methanol fuel cells is the problem of methanol crossover. With the aim of solving this problem without adverse effects on the membrane conductivity, Nafion/Palladium–silica nanofiber (N/Pd–SiO2) composite membranes with various fiber loadings were prepared by a solution casting method. The silica-supported palladium nanofibers had diameters ranging from 100 nm to 200 nm and were synthesized by a facile electro-spinning method. The thermal properties, ionic exchange capacities, water uptake, proton conductivities, methanol permeabilities, chemical structures, and micro-structural morphologies were determined for the prepared membranes. It was found that the transport properties of the membranes were affected by the fiber loading. All of the composite membranes showed higher water uptake and ion exchange capacities compared to commercial Nafion 117 and proved to be thermally stable for use as proton exchange membranes. The composite membranes with optimum fiber content (3 wt%) showed an improved proton conductivity of 0.1292 S cm−1 and a reduced methanol permeability of 8.36 × 10−7 cm2 s−1. In single cell tests, it was observed that, the maximum power density measured with composite membrane is higher than those of commercial Nafion 117.  相似文献   

7.
The semiconductor-ionic composite membrane has been recently developed for a novel solid oxide fuel cell (SOFC), i.e., the semiconductor-ion membrane fuel cell (SIMFC). In this work, the perovskite-type SrFeO3-δ (SFO) as semiconductor material was composited with ionic conductor Ce0.8Sm0.2O2-δ (SDC) to form the SFO-SDC composite membrane for SIMFCs. The SFO-SDC SIMFCs using the optimized weight ratio of 3:7 SFO-SDC membrane obtained the best performances, 780 mW cm?2 at 550 °C, compared to 348 mW cm?2 obtained from the pure SDC electrolyte fuel cell. Introduction of SFO into SDC can extend the triple phase boundary and provide more active sites for accelerating the fuel cell reactions, thus significantly enhanced the cell power output. Moreover, SFO was employed as the cathode, and a higher power output, 907 mW cm?2 was achieved, suggesting that SFO cathode is more compatible for the SFO-SDC system in SIMFCs. This work provides an attractive strategy for the development of low temperature SOFCs.  相似文献   

8.
Ni–Fe2O3 composite coating was applied onto ferritic stainless steel using the cost-effective method of electroplating for intermediate temperature solid oxide fuel cell (SOFC) interconnects application. By comparison, the coated and bare steels were evaluated at 800 °C in air corresponding to the cathode environment of SOFC. The oxidation investigations indicated that the oxidation rate of the coated steel was close to that of the bare steel after initially rapid mass gain. The mass gain of the coated steel was higher than that of the bare steel owing to the formation of double-layer oxide structure with an outer layer of (Ni,Fe)3O4/NiO atop an inner layer of Cr2O3. The area specific resistance (ASR) of the double-layer oxide scale was lower than that of the Cr2O3 scale thermally grown on the bare steel.  相似文献   

9.
In this study, the chemical and thermal stabilities of eleven B2O3-free SiO2–Al2O3–SrO–La2O3–ZnO–TiO2 glasses were investigated, and the adhesion and sealing properties of the glasses with respect to Gd0.2Ce0.8O2−δ (GDC) electrolyte and SUS 430 stainless steel (SUS430) were evaluated for use in intermediate temperature solid oxide fuel cells (ITSOFCs). It was found that the major crystallites formed in the glasses were initiated during the joining process at 950 °C, and only slight changes were observed in the intensity of crystallite peaks for the glasses subsequently soaked at 700 °C for 200 h. Experiments on the glass sandwiched with GDC electrolyte and SUS430 indicated that the SALSTi11 and SALSZT10 glasses provided good adhesion along the interfaces after heat treatment. According to the results of leakage test, the seals with the SALSTi11 and SALSZT10 glasses at 700 °C for a duration of 500 h showed good thermal stability with low leak rates of 0.007 and 0.003 sccm/cm at 0.5 psi, respectively. This property indicates a highly promising long-term thermal stability qualifying the sealing materials for ITSOFC applications.  相似文献   

10.
Rehydrogenation behavior of 6LiBH4 + CaH2 composite with NbF5 has been studied between 350 and 500 °C after dehydrogenation at 450 °C. The composite exhibits the best rehydrogenation feature at 450 °C in terms of the overall rehydrogenation rate and the amount of absorbed hydrogen. It is found that about 9 wt% hydrogen is absorbed at 450 °C for 12 h. Up to 10 dehydrogenation–hydrogenation cycles have been carried out for the composite. It is demonstrated that 6LiBH4 + CaH2 with 15 wt% NbF5 maintains a reversible hydrogen storage capacity of about 6 wt% at 450 °C after a slight degradation between the 1st and 5th cycles. The addition of NbF5 seems to improve the cycle properties by retarding microstructural coarsening during cycles.  相似文献   

11.
Thermal behaviors and stability of glass/glass–ceramic-based sealant materials are critical issues for high temperature solid oxide fuel/electrolyzer cells. To understand the thermophysical properties and devitrification behavior of SrO–La2O3–Al2O3–B2O3–SiO2 system, glasses were synthesized by quenching (25 − X)SrO–20La2O3–(7 + X)Al2O3–40B2O3–8SiO2 oxides, where X was varied from 0.0 mol% to 10.0 mol% at 2.5 mol% interval. Thermal properties were characterized by dilatometry and differential scanning calorimetry (DSC). Microstructural studies were performed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). All the compositions have a glass transition temperature greater than 620 °C and a crystallization temperature greater than 826 °C. Also, all the glasses have a coefficient of thermal expansion (CTE) between 9.0 × 10−6 K−1 and 14.5 × 106 K−1 after the first thermal cycle. La2O3 and B2O3 contribute to glass devitrification by forming crystalline LaBO3. Al2O3 stabilizes the glasses by suppressing devitrification. Significant improvement in devitrification resistance is observed as X increases from 0.0 mol% to 10.0 mol%.  相似文献   

12.
In this study, eleven alkaline earth metal and B2O3-free SiO2–Al2O3–Y2O3–ZnO glass sealants were prepared. The thermal stability, adhesion, and sealing properties of the glass systems with respect to SUS430 stainless steel (SUS430) were assessed for use in intermediate temperature solid oxide fuel cells (ITSOFCs). The glass transition points fell in the range of 694 °C and 833 °C, while the glass softening points, varying from 725 °C to 885 °C, decreased linearly with the ZnO/SiO2 ratio. Among the glasses evaluated, the YAS1-50, YAS4-50, YAS5-50, and YAS5-90 glasses coupled with SUS430 showed fine adhesion and no detectable inter-diffusion across the interface. The coefficient of thermal expansion (CTE) of the YAS5-50 glass escalated from 7.01 to 9.30 × 10−6/K with 50 wt% Bi1.5Y0.5O3 (BYO) fillers. The leak rates of the composite seals comprising the YAS5-50 glass and 50 wt% BYO fillers were measured at 700 °C after joining at 850 °C. The measurement used helium with a pressure at 1 psi across the glass seals and a slight load of 1.0 psi to minimize compressive seal effect on the glass. It appeared that a low leak rate of 0.052 sccm/cm was obtained and stayed unchanged as the system was soaked at 700 °C for 500 h, indicating a fine thermal stability against the extended duration benefited from the limited crystallization of the YAS5-50 glass. This promising long-term stability qualified the glass for use as SOFC seal.  相似文献   

13.
A palladium-impregnated La0.75Sr0.25Cr0.5Mn0.5O3−δ/yttria-stabilized zirconia (LSCM/YSZ) composite anode is investigated for the direct utilization of methane and ethanol fuels in solid oxide fuel cells (SOFCs). Impregnation of Pd nanoparticles significantly enhances the electrocatalytic activity of LSCM/YSZ composite anodes for the methane and ethanol electrooxidation reaction. At 800 °C, the maximum power density is increased by two and eight times with methane and ethanol fuels, respectively, for a cell with the Pd-impregnated LSCM/YSZ composite anode, as compared with that using a pure LSCM/YSZ anode. No carbon deposition is observed during the reaction of methane and ethanol fuels on the Pd-impregnated LSCM/YSZ composite anode. The results show the promises of nanostructured Pd-impregnated LSCM/YSZ composites as effective anodes for direct methane and ethanol SOFCs.  相似文献   

14.
This paper details the study of La2O3 modifications and their effect on the stability of a NiO–CaO/Al2O3 sorption complex catalyst used in the ReSER (reactive sorption enhanced reforming) process of hydrogen production. The La2O3-modified NiO–CaO/Al2O3 sorption complex catalyst was prepared by isometric impregnation. The microstructure, morphology and reducibility of the La2O3-modified sorption complex catalyst were characterized by means of BET, TEM, XRD and TPR. The stability of the catalyst used in the ReSER process was evaluated on a laboratory-scale fixed-bed reactor. Our results showed that modifying the sorption complex catalyst with La2O3 improved its stability up to 30 cycles of the ReSER process for hydrogen production, while only seven cycles were obtained without La2O3 modification. We showed that the source of the stability improvement that the La2O3 in the catalyst not only functioned to restrain the decrease of the support surface area and reduce the sintering of nano-CaCO3, which could limit the decay of the sorption capacity and stability of the catalyst, but also increased the interaction between nickel oxide and the support, which improved the stability of the catalyst by increasing the dispersion of nickel grains and inhibited the growth of nickel grain size.  相似文献   

15.
Pristine Ni/γ–Al2O3 and CeO2–Ni/γ–Al2O3 catalysts were prepared by co-impregnation technique for dry reforming of propane. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) were used to examine the structure and morphology of the catalysts before and after the reforming reactions. The excellent interaction between catalyst active phases was observed in both CeO2–Ni/γ–Al2O3 and Ni/γ–Al2O3 stabilized with polyethelene glycol (Ni/γ–Al2O3–PEG). Towards C3H8 and CO2 conversion, the CeO2–Ni/γ–Al2O3 and Ni/γ–Al2O3–PEG showed improved catalytic activity when compared to the pristine Ni/γ–Al2O3 catalyst. Interestingly, high H2 concentration was achieved with the CeO2–Ni/γ–Al2O3 and high CO concentration with the Ni/γ–Al2O3–PEG, which is due to the nanoconfinement of nickel particles within the support and favorable metal-support interaction as a result of plasma reduction. The CeO2–Ni/γ–Al2O3 catalyst exhibited better stability for anti-sintering and coke resistance, thus exhibiting high reactivity and durability in the dry reforming.  相似文献   

16.
Investigation of the feasibility of the thermochemical two-step water splitting cycle based on MnFe2O4/Na2CO3 system is reported. Influence of temperature and carbon dioxide pressure on the oxygen-releasing step was investigated. XRD analysis was applied to obtain phase identification of reacted powders at investigated experimental conditions. Different sodium sub-stoichiometric Na1−δ(Mn1/3Fe2/3)O2−δ/2 compounds were observed and their structure determined by using Rietveld analysis. Selected experimental conditions permitted to define a T/pCO2T/pCO2 phase diagram, showing different solid phases coexistence regions. Experimental conditions that permit complete regeneration of the initial MnFe2O4/Na2CO3 mixture were identified (field I in the reported diagram), demonstrating the possibility of full chemical cyclical operation of the system.  相似文献   

17.
Metal-supported solid oxide fuel cells (SOFCs) containing porous 430L stainless steel support, Ni-YSZ anode and YSZ electrolyte were fabricated by tape casting, laminating and co-firing in a reduced atmosphere. (Bi2O3)0.7(Er2O3)0.3–Ag composite cathode was applied by screen printing and in-situ sintering. The polarization resistances of the composite cathode were 1.18, 0.48, 0.18, 0.09 Ω cm2 at 600, 650, 700 and 750 °C, respectively. A promissing maximum power density of 568 mW cm−2 at 750 °C was obtained of the single cell. Short-term stability was measured as well.  相似文献   

18.
SmBaCoCuO5+δxCe0.9Gd0.1O1.95 (SBCCO–xGDC, x = 10, 30, 50, 60, wt%) composite cathodes have been investigated for their potential utilization in intermediate temperature solid oxide fuel cells (IT-SOFCs). The thermal expansion behavior shows that the thermal expansion coefficient (TEC) values of SBCCO cathode decrease with GDC addition. The TEC of SBCCO–50GDC cathode is 13.1 × 10−6 K−1 from 30 to 850 °C in air. By means of DC polarization and AC impedance spectroscopy, the electrochemical performance of SBCCO–xGDC composite cathodes on GDC electrolyte is examined. Results indicate that the proper addition of GDC could improve the performance of SBCCO cathode. The optimum content of GDC in the composite cathodes is 50 wt% with the polarization resistance (Rp) of 0.040 Ω cm2 at 800 °C. An electrolyte-supported single-cell configuration of SBCCO–50GDC/GDC/Ni–GDC attains a maximum power density of 628 mW cm−2 at 800 °C. Preliminary results indicate that SBCCO–50GDC is especially promising as a cathode for IT-SOFCs.  相似文献   

19.
Injection of natural gas into the tuyere raceway of a blast furnace (BF) can effectively decrease the use of coke, as well as reduce CO2 emission. Therefore, the reduction behaviour of sinters, which account for 60% of the raw materials charged into the BF process under H2, is important for natural gas utilisation. This study used thermogravimetric analysis under H2 atmosphere to investigate the reduction kinetics of dicalcium ferrite (2CaO·Fe2O3, C2F) and calcium ferrite (CaO·Fe2O3, CF), which are the dominant components in fluxed sinters. Results indicated that CF reduction has a larger maximum reduction degree and a higher reaction constant than C2F. The apparent activation energy of CF is also larger than that of C2F, thereby illustrating that C2F reduction proceeds more easily than CF. X–ray diffraction measurements indicated that C2F is reduced to CaO and Fe in a single step, whereas CF is reduced with four steps in the following order: CaO·FeO·Fe2O3, CaO·3FeO·Fe2O3, C2F and Fe. Sharp and ln–ln methods revealed that C2F reduction is described by 2D Avrami–Erofeev (A–E) equation and that of CF is expressed by 2D A–E equation but tends slightly to 3D A–E equation in the late stage. A–E equations were verified to be consistent with the experimental reduction degree data of C2F and CF. A kinetics model that links reduction routes to model functions was proposed to describe the powder reduction of C2F and CF. Comparisons of the reduction behaviours of C2F or CF by H2 and CO implied that the reduction rate rises and activation energy declines during the reduction of samples by H2.  相似文献   

20.
The in situ deposition of 1.5 wt.% Ru/γ-Al2O3 catalytic layers on cordierite monoliths (400 cpsi, diameter 1 cm, length 1.5 cm), combining Solution Combustion Synthesis (SCS) with Wet Impregnation (WI), was addressed. First of all, the physicochemical properties of the catalyst at powder level were investigated by X-ray Diffraction (XRD), N2 adsorption (BET), and H2 chemisorption, while the morphology of final structured catalysts was evaluated by SEM analysis and mechanical strength tests by sonication. The catalytic activity towards methane Oxy-Steam Reforming (OSR) reaction was studied after the choice of the most suitable catalyst load, carrying out tests varying the temperature (500–800 °C), the oxygen-to-carbon ratio (O/C = 0.45–0.75, oxygen as moles), the steam-to-carbon ratio (S/C = 1.0–2.4), and the weight space velocity (WSV = 34,000–400,000 N ml gcat−1 h−1), in order to identify the optimum operative conditions. The results showed that a total catalytic layer load (active metal plus oxide carrier) equal to 6.5 mg cm−2 was enough to achieve excellent performances, while no substantial improvements were obtained at higher catalytic layer loads. Moreover, the coated Ru/γ-Al2O3 monolith exhibited a good catalytic activity towards the studied reaction also at considerably high WSV values (till 400,000 N ml gcat−1 h−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号