首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Successful synthesis of LiBH4·NH3 confined in nanoporous silicon dioxide (LiBH4·NH3@SiO2) was achieved via a new “ammonia-deliquescence” method, which avoids the involvement of any solvents during the process of synthesis. Compared to the pure LiBH4·NH3, the confined LiBH4·NH3@SiO2 exhibited significantly improved dehydrogenation properties, which not only suppressed the emission of NH3, but also decreased the onset dehydrogenation temperature to 60 °C, thus leading to an enhanced conversion of NH3 to H2. In the temperature range of 60–300 °C, the mole ratio of H2 release for the confined LiBH4·NH3@SiO2 is 85 mol % of the total gas evolved, compared to 2.66 mol % for the pristine LiBH4·NH3. Isothermal dehydrogenation results showed that the LiBH4·NH3@SiO2 is able to release about 1.26, 2.09, and 2.35 equiv. of hydrogen, at 150 °C, 200 °C, and 250 °C, respectively. From analysis of the Fourier transform infrared, Raman, and nuclear magnetic resonance spectra of the confined LiBH4·NH3@SiO2 sample heated to various temperatures, as well as its dehydrogenation product under NH3 atmosphere, it is proposed that the improved dehydrogenation of LiBH4·NH3@SiO2 is mainly attributable to two crucial factors resulting from the nanoconfinement: (1) stabilization of the NH3 in the nanopores of SiO2, and (2) enhanced combination of LiBH4 and NH3 groups, leading to fast dehydrogenation at low temperature.  相似文献   

5.
The significantly enhanced dehydrogenation performance of binary complex system, NH3BH3/LiBH4·NH3, were achieved through a chemical modification of LiH to form ternary composites of x (LiH–NH3BH3)/LiBH4·NH3. Among the studied composites, 3LiH–3NH3BH3/LiBH4·NH3 released ca. 10 wt. % high-pure hydrogen (>99.9 mol%) below 100 °C with fast kinetics, while less than 8 wt. % hydrogen, accompanied with a fair number of volatile byproducts, were released from 3NH3BH3/LiBH4·NH3 at the same conditions. Further investigations revealed that the hydrogen emission from x (LiH–NH3BH3)/LiBH4·NH3 composites is based on the combination mechanism of Hδ+ and Hδ− through the interaction between LiH–NH3BH3 and NH3 group in LiBH4·NH3, in which the controllable protic hydrogen source from the stabilized NH3 group played a crucial role in providing optimal stoichiometric ratio of Hδ+ and Hδ−, and thus leading to the significant improvement of dehydrogenation capacity and purity.  相似文献   

6.
7.
8.
Two new cobalt-based ammine borohydrides were prepared via ball milling of LiBH4 and CoCln·3NH3 (n = 3, 2) with molar ratios of 3:1 and 2:1, respectively. X-ray diffraction (XRD) results revealed the as-prepared composites having amorphous state. Thermogravimetric analysis-mass spectrometry (TG-MS) measurements showed that the two composites mainly release H2, concurrent with the evolution of a small amount of NH3. Further results showed that the excessive addition of LiBH4 can suppress the liberation of NH3, resulting in the release of H2 with a high purity (>99 mol.%). By combination with the temperature-programmed-desorption (TPD) results, the CoCl3·3NH3/4LiBH4 and CoCl2·3NH3/3LiBH4composites can release 7.3 wt.% (4.2 wt.% including LiCl) and 4.2 wt.% (2.0 wt.% including LiCl) pure hydrogen, respectively, in the temperature range of 25–300 °C. Isothermal dehydrogenation results reveal that CoCl3·3NH3/3LiBH4 shows favorable dehydrogenation rate at low temperatures, releasing about 5.2 wt.% (2.9 wt.% including LiCl) of hydrogen within 45 min at 80 °C.  相似文献   

9.
10.
The electronic structures and bonding characters, the occupation energies of dopants, as well as the formation energies of Frenkel defects in pure LiBH4·NH3 and in Mg- and Al-substituted LiBH4·NH3 were investigated by using first-principles calculations. The occupation energies show that the substitutions with Mg and Al destabilize LiBH4·NH3 and that Mg substitution is easier than Al substitution. Substitution with Mg or Al partly reduced interactions between B–H and N–H atoms, thus improving the dehydrogenation property of LiBH4·NH3. At the same time, substitution with Mg or Al increases the interactions between metal and N atoms, which stabilize the NH3 group and inhibit the release of NH3 during dehydrogenation. The formation energy of Frenkel defects indicates that Mg or Al doping facilitates the formation of Frenkel defects. Our theoretical studies show that Mg and Al are good candidates but Al is better than Mg for improving the dehydrogenation property of LiBH4·NH3.  相似文献   

11.
12.
13.
14.
15.
16.
Mechanically milling ammonia borane and lithium borohydride in equivalent molar ratio results in the formation of a new complex, LiBH4·NH3BH3. Its structure was successfully determined using combined X-ray diffraction and first-principles calculations. LiBH4·NH3BH3 was carefully studied in terms of its decomposition behavior and reversible dehydrogenation property, particularly in comparison with the component phases. In parallel to the property examination, X-ray diffraction and Fourier transformation infrared spectroscopy techniques were employed to monitor the phase evolution and bonding structure changes in the reaction process. Our study found that LiBH4·NH3BH3 first disproportionates into (LiBH4)2·NH3BH3 and NH3BH3, and the resulting mixture exhibits a three-step decomposition behavior upon heating to 450 °C, totally yielding ∼15.7 wt% hydrogen. Interestingly, it was found that h-BN was formed at such a moderate temperature. And owing to the in situ formation of h-BN, LiBH4·NH3BH3 exhibits significantly improved reversible dehydrogenation properties in comparison with the LiBH4 phase.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号