首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports the catalytic activity of several metal oxide nanoparticles such as TiO2, CeO2, La2O3, Pr2O3, Nd2O3, Sm2O3, Eu2O3 and Gd2O3 for NaAlH4. TiO2 was found to be the most effective catalyst. In order to find the size dependence of TiO2 nanoparticles on the catalytic activity, TiO2 nanoparticles of different sizes such as 5 nm, 25 nm, 150 nm and 200 nm have been used. TiO2 nanoparticles lower the desorption temperature of sodium alanate (NaAlH4) from ∼ 473 K to ∼373 K. Using 5 nm and 25 nm TiO2 catalysts ∼3 wt% hydrogen could be released within 5–7 min at 423 K. TiO2 (25 nm) catalyst lowers the activation energy of NaAlH4 to 67 kJ/mol H2, as compared to 119 kJ/mol H2 for the pristine material. This is better than Ti nanoparticles catalyst of similar size which lowers the activation energy up to 77 kJ/mol H2. The long-term reversible characteristics of 25 nm TiO2 admixed NaAlH4 up to 35 cycles and the phase structural features of the cycled samples are discussed.  相似文献   

2.
Hydrogen storage using the metal hydrides and complex hydrides is the most convenient method because it is safe, enables high hydrogen capacity and requires optimum operating condition. Metal hydrides and complex hydrides offer high gravimetric capacity that allows storage of large amounts of hydrogen. However, the high operating temperature and low reversibility hindered the practical implementation of the metal hydrides and complex hydrides. An approach of combining two or more hydrides, which are called reactive hydride composites (RHCs), was introduced to improve the performance of the metal hydrides and complex hydrides. The RHC system approach has significantly enhanced the hydrogen storage performance of the metal hydrides and complex hydrides by modifying the thermodynamics of the composite system through the metathesis reaction that occurred between the hydrides, hence enhancing the kinetic and reversibility performance of the composite system. In this paper, the overview of the RHC system was presented in detail. The challenges and perspectives of the RHC system are also discussed. This is the first review report on the RHC system for solid-state hydrogen storage.  相似文献   

3.
The effect of different carbon nanostructures specifically carbon nanotubes (CNTs) and carbon nanofibers (CNFs) on the improvement of the de/re-hydrogenation characteristics of a Mg(NH2)2/LiH mixture have been studied. Amongst CNTs and CNFs, the improvement in the hydrogenation properties for the Mg(NH2)2/LiH mixture is higher when CNFs are used as a catalyst. Investigations are also focused on the deployment of two different types of CNF (a) CNF1 (synthesized using a ZrFe2 catalyst) and (b) CNF2 (synthesized using a LaNi5 catalyst). The results show that CNF2 is better. The maximum decomposition temperature for the pristine Mg(NH2)2/LiH mixture is found to be ∼250 °C, which is reduced to ∼180 and ∼150 °C for the sample mixed with 4 wt% of multi-walled carbon nanotubes (MWCNTs) and CNF2 respectively. The activation energy for the dehydrogenation reaction is found to be 74 and 68 kJ mol−1 for the samples mixed with MWCNT and CNF2 respectively, whereas the activation energy for the dehydrogenation reaction of the pristine Mg(NH2)2/LiH mixture is 97 kJ mol−1. The catalytic activity and the de/re-hydrogenation characteristics of the Mg(NH2)2/LiH mixture mixed with different carbon nanostructures are described and discussed.  相似文献   

4.
Hydrogen is an ideal energy carrier which is considered for future transport, such as automotive applications. In this context storage of hydrogen is one of the key challenges in developing hydrogen economy. The relatively advanced storage methods such as high-pressure gas or liquid cannot fulfill future storage goals. Chemical or physically combined storage of hydrogen in other materials has potential advantages over other storage methods. Intensive research has been done on metal hydrides recently for improvement of hydrogenation properties. The present review reports recent developments of metal hydrides on properties including hydrogen-storage capacity, kinetics, cyclic behavior, toxicity, pressure and thermal response. A group of Mg-based hydrides stand as promising candidate for competitive hydrogen storage with reversible hydrogen capacity up to 7.6 wt% for on-board applications. Efforts have been devoted to these materials to decrease their desorption temperature, enhance the kinetics and cycle life. The kinetics has been improved by adding an appropriate catalyst into the system and as well as by ball-milling that introduces defects with improved surface properties. The studies reported promising results, such as improved kinetics and lower decomposition temperatures, however, the state-of-the-art materials are still far from meeting the aimed target for their transport applications. Therefore, further research work is needed to achieve the goal by improving development on hydrogenation, thermal and cyclic behavior of metal hydrides.  相似文献   

5.
We have studied hydrogen storage in a commercial activated carbon impregnated with nickel. High-pressure (20–30 bars) hydrogen uptake at room temperature was assessed using a high-pressure volumetric adsorption–desorption system. The properties of the prepared materials were studied by means of N2N2 physisorption, X-ray diffraction, transmission electron microscopy, metal surface area, hydrogen temperature programmed reduction and hydrogen temperature programmed desorption. Various factors influencing the level of hydrogen uptake (metal precursor, metal content, method of preparation) were examined and discussed. It is concluded that the hydrogen stored is loosely chemisorbed on the carbonaceous material surface as spilt-over species through H2H2 dissociation on the metal phase then migration onto the support. This hydrogen would also be directly adsorbed on carbon acceptor sites induced by H2H2-pretreatment at 623 K. In both cases, the stored hydrogen directly desorbs from the active carbon support.  相似文献   

6.
Hydrogen adsorption and desorption over Ru/SiO2 and Ru/Vulcan are investigated in terms of hydrogen storage and release characteristics by both dynamic and static experiments. Ru particle dispersions as a function of metal loading were determined by HR-TEM and volumetric chemisorption experiments. Vulcan was more accommodating for spillover hydrogen than SiO2. High Ru dispersions, i.e., small particle sizes, favored the amount of hydrogen spillover to Vulcan, as revealed by temperature programmed desorption (TPD) of hydrogen. TPD of hydrogen under He flow experiments over Ru/SiO2 and Ru/Vulcan materials revealed a low temperature process (up to 200 °C) attributed to desorption of weakly bound hydrogen from Ru metal surface. A high temperature process (above 450 °C) was attributed to diffusion of hydrogen from the support to the Ru particle and desorption at the Ru sites. Hydrogen adsorbs strongly on Ru metal, as indicated by the initial heats of H2 adsorption measured as 100 kJ/mol over 1 wt% Ru/Vulcan by adsorption calorimetry. At higher coverages, heat of adsorption of hydrogen was measured as 10 kJ/mol. Low heat of adsorption of hydrogen at high coverages indicate multilayer weak adsorption of hydrogen over the storage material, which can desorb at lower temperatures.  相似文献   

7.
This study demonstrates how zirconia additive transforms to zirconium hydride and substantially lowers the dehydrogenation temperature of magnesium hydride. We prepared MgH2+xZrO2 (x = 0.125 and 0.5) powder samples reacted for 15 min, 1 h, 5 h, 10 h, 15 h, 20 h and 25 h, and monitored the phase changes at each stage of the reaction. Differential scanning calorimetry (DSC) study provides the first crucial evidence regarding the chemical transformation of zirconia. Subsequently, detailed additional sample testing by X-ray diffraction (XRD), energy dispersive x-ray spectroscopy and confocal Raman microscopy provide strong supports that low temperature dehydrogenation of magnesium hydride is a result of formation of an active in situ product (zirconium hydride). This observation is validated by the negative Gibbs free energy values obtained for the formation of zirconium hydride over a broad working temperature range of 0–600 °C. Scanning electron microscopy (SEM) results prove the high dispersion of tiny nanoparticles all across the surface after the chemical interaction between MgH2 and ZrO2 and atomic force microscopy (AFM) study further proves that objects with grain sizes of ~10 nm are abundant throughout the scanned surfaces. These observations reiterate that better metal oxide additives interact with MgH2 and results to the evolution of highly active insitu nanocatalysts.  相似文献   

8.
The problem of solid state hydrogen storage   总被引:2,自引:0,他引:2  
A short review of the materials under investigation suitable for solid state hydrogen storage is presented, with particular reference to the experimental activity carried out at the laboratory of Hydrogen Group of Padova University.  相似文献   

9.
The adsorption of hydrogen on single-walled and multi-walled carbon nanotubes (CNTs) was investigated at 77 and 298 K, in the pressure range of 0–1000 Torr. The adsorption isotherms indicate that adsorption follows the Langmuir model. Hydrogen uptakes were found to depend strongly on the nature of the CNTs. Single-walled CNTs adsorb significantly higher quantities of hydrogen per unit mass of the solid, while the opposite is true on a per unit surface area basis. This observation implies that adsorption takes place selectively on specific sites on the surface. The hydrogen uptake capacity of CNTs was also found to be affected by the purity of the materials, increasing with increasing purity. Temperature programmed desorption indicated that relatively strong adsorption bonds develop between adsorbent and adsorbate and that a single type of adsorption site exists on the solid surface.  相似文献   

10.
The “low-temperature” intermetallic hydrides with hydrogen storage capacities below 2 wt% can provide compact H2 storage simultaneously serving as a ballast. Thus, their low weight capacity, which is usually considered as a major disadvantage to their use in vehicular H2 storage applications, is an advantage for the heavy duty utility vehicles. Here, we present new engineering solutions of a MH hydrogen storage tank for fuel cell utility vehicles which combines compactness, adjustable high weight, as well as good dynamics of hydrogen charge/discharge. The tank is an assembly of several MH cassettes each comprising several MH containers made of stainless steel tube with embedded (pressed-in) perforated copper fins and filled with a powder of a composite MH material which contains AB2- and AB5-type hydride forming alloys and expanded natural graphite. The assembly of the MH containers staggered together with heating/cooling tubes in the cassette is encased in molten lead followed by the solidification of the latter. The tank can provide >2 h long H2 supply to the fuel cell stack operated at 11 kWe (H2 flow rate of 120 NL/min). The refuelling time of the MH tank (T = 15–20 °C, P(H2) = 100–150 bar) is about 15–20 min.  相似文献   

11.
For hydrogen to be successfully used as an energy carrier in a new renewable energy driven economy, more efficient hydrogen storage technologies have to be found. Solid-state hydrogen storage in complex metal hydrides, such as sodium alanate (NaAlH4), is a well-researched candidate for this application. A series of NaAlH4/mesoporous carbon black composites, with high NaAlH4 content (50–90 wt%), prepared via ball milling have demonstrated significantly lower dehydrogenation temperatures with intense dehydrogenation starting at ∼373 K compared to bulk alanate's ≥ 456 K. Dehydrogenation/hydrogenation cycling experiments have demonstrated partial hydrogenation at 6 MPa H2 and 423 K. The cycling experiments combined with temperature-programmed dehydrogenation and powder X-ray diffraction have given insight into the fundamental processes driving the H2 release and uptake in the NaAlH4/carbon composites. It is established that most of the hydrogenation behavior can be attributed to the Na3AlH6 ↔ NaH transition.  相似文献   

12.
Multinary complex hydrides comprised of borohydrides, amides and metal hydrides have been synthesized using the solid state mechano-chemical process. After the optimization of the system, it was found that LiBH4/LiNH2/MgH2 exhibits potential reversible hydrogen storage behavior (>6 wt.%) at temperatures of 125–175 °C. To further improve the hydrogen performance of the system, various nano additives namely, nickel, cobalt, iron, copper, and manganese were investigated. It was observed that some of these additives (Co, Ni) lowered the hydrogen release temperature at least 75–100 °C in the major hydrogen decomposition step. While other additives acted as catalysts and increased the rate at which hydrogen was released. Combinatorial addition of selected materials were also investigated and found to have both a positive effect on kinetics and reduction in hydrogen desorption temperature.  相似文献   

13.
Along with a brief overview of literature data on energy storage technologies utilising hydrogen and metal hydrides, this article presents results of the related R&D activities carried out by the authors. The focus is put on proper selection of metal hydride materials on the basis of AB5- and AB2-type intermetallic compounds for hydrogen storage and compression applications, based on the analysis of PCT properties of the materials in systems with H2 gas. The article also presents features of integrated energy storage systems utilising metal hydride hydrogen storage and compression, as well as their metal hydride based components developed at IPCP and HySA Systems.  相似文献   

14.
The feasibility of scaling up the production of a Mg-based hydride as material for solid state hydrogen storage is demonstrated in the present work. Magnesium hydride, added with a Zr–Ni alloy as catalyst, was treated in an attritor-type ball mill, suitable to process a quantity of 0.5–1 kg of material. SEM–EDS examination showed that after milling the catalyst was well distributed among the magnesium hydride crystallites. Thermodynamic and kinetic properties determined by a Sievert's type apparatus showed that the semi-industrial product kept the main properties of the material prepared at the laboratory scale. The maximum amount of stored hydrogen reached values between 5.3 and 5.6 wt% and the hydriding and dehydriding times were of the order of few minutes at about 300 °C.  相似文献   

15.
We describe a metal hydride (MH) hydrogen storage tank for light fuel cell vehicle application developed at HySA Systems. A multi-component AB2-type hydrogen storage alloy was produced by vacuum induction melting (10 kg per a load) at our industrial-scale facility. The MH alloy has acceptable H sorption performance, including reversible H storage capacity up to ∼170 NL/kg (1.5 wt% H). The cassette-type MH tank was made up of 2 cylindrical aluminium canisters with transversal internal copper fins and external aluminium fins for improving the heat exchange between the heating medium and the MH tank. Heat supply and removal was provided from the outside using air at T = 15–25 °C. The MH tank was tested at the conditions of natural or forced (velocity ∼2 m/s) air convection. The tests included H2 charge of the tank at P = 15–40 bar and its discharge at P = 1 bar. The tank in the H2 discharge mode was also tested together with open cathode low-temperature proton exchange membrane fuel cell (LT PEMFC).  相似文献   

16.
Pd doped Multi-Walled Carbon Nanotubes were prepared via supercritical carbon dioxide deposition method in order to enhance the hydrogen uptake capacity of carbon nanotubes at ambient conditions. A new bipyridyl precursor that enables reduction at moderate conditions was used during preparation of the sample. Both XRD analyses and TEM images confirmed that average Pd nanoparticle size distribution was around 10 nm. Hydrogen adsorption and desorption experiments at room temperature with very low pressures (0–0.133 bar) were conducted together with temperature programmed desorption (TPD) and reduction (TPR) experiments on undoped and doped materials to understand the complete hydrogen uptake profile of the materials. TPD experiments showed that Pd nanoparticles increased the hydrogen desorption activity at moderate temperatures around at 38 °C while for undoped materials it was determined around at 600 °C. Moreover, a drastic enhancement of hydrogen storage was recorded from 44 μmol/g sample for undoped material to 737 μmol/g sample for doped material through adsorption/desorption isotherms at room temperature. This enhancement, also verified by TPR, was attributed to spillover effect.  相似文献   

17.
Hydrogen-based economy has a great potential for addressing the world's environmental concerns by using hydrogen as its future energy carrier. Hydrogen can be stored in gaseous, liquid and solid-state form, but among all solid-state hydrogen storage materials (metal hydrides) have the highest energy density. However, hydrogen accessibility is a challenging step in metal hydride-based materials. To improve the hydrogen storage kinetics, effects of functionalized catalysts/dopants on metal atoms have been extensively studied. The nanostructuring of metal hydrides is a new focus and has enhanced hydrogen storage properties by allowing higher surface area and thus reversibility, hydrogen storage density, faster and tunable kinetics, lower absorption and desorption temperatures, and durability. The effect of incorporating nanoparticles of carbon-based materials (graphene, C60, carbon nanotubes (CNTs), carbon black, and carbon aerogel) showed improved hydrogen storage characteristics of metal hydrides. In this critical review, the effects of various carbon-based materials, catalysts, and dopants are summarized in terms of hydrogen-storage capacity and kinetics. This review also highlights the effects of carbon nanomaterials on metal hydrides along with advanced synthesis routes, and analysis techniques to explore the effects of encapsulated metal hydrides and carbon particles. In addition, effects of carbon composites in polymeric composites for improved hydrogen storage properties in solid-state forms, and new characterization techniques are also discussed. As is known, the nanomaterials have extremely higher surface area (100–1000 time more surface area in m2/g) when compared to the bulk scale materials; thus, hydrogen absorption and desorption can be tuned in nanoscale structures for various industrial applications. The nanoscale tailoring of metal hydrides with carbon materials is a promising strategy for the next generation of solid-state hydrogen storage systems for different industries.  相似文献   

18.
Hydrogen storage in metal hydrides presents distinct challenges which encourage the study of effective heat management strategies. Hydrogen absorption in metal hydrides is an exothermic reaction, consequently the generated heat must be removed effectively to achieve the desired performance. This work presents a mathematical model describing the adsorption of hydrogen in La Ni4.7Co0.3 metal hydride as a storage material. Heat and mass transfer effects are modeled in detail. The effect of heat transfer coefficient is also estimated. Besides, a heat transfer fluid for cooling is incorporated to the model. The problem is mathematically formulated presenting a numerical simulation of a design of a cylindrical tank for hydrogen storage. The alloy is studied by using pressure-composition-temperature curves which are carried out at different temperatures. Thermodynamic parameters and hydrogen storage capacity are determined. For isotherm's kinetics, the Jonhson-Mehl-Avrami-Kolomogorov model is used, from which the kinetic constant of the hydriding process is determined.  相似文献   

19.
Density Functional Theory (DFT) calculations were employed to study a series of coinage metal-hydrogen associations formulated as [M(Η2)n][A] (M = CuI, AgI or AuI, n = 1–5). The [M(Η2)n][A] salts utilize both their anions and cations for H2 storage. The [M(Η2)n]+ cations could be stabilized in the solid state by voluminous counter-anions, i.e. the [(H3B) (BH2NH2)5(NH2)]-, [B(CNBH3)3]- and [B12H12]- anions. The estimated bond dissociation energies (BDEs) of the M···(η2-H2) bonds are 5–17, 4–11 and 1–26 kcal/mol for the [Cu(Η2)4]+, [Ag (Η2)4]+ and [Au (Η2)4]+ cationic species respectively, while the fifth H2 molecule is estimated to be very loosely associated to the metal center. Four H2 molecules could be exploited from the [Cu(Η2)n][A] and [Ag (Η2)n][A] molecules in addition to the amount of H2 stored in the anion [A]-. Among the [M(Η2)n][A] salts optimal gravimetric, kinetic and thermodynamic properties and relatively low cost, are predicted for [Cu(Η2)n][(H3B) (BH2NH2)5(NH2)].  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号