首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transient response of proton exchange membrane fuel cells during start-up is an important issue for backup power systems. These require a very short start-up time which limits the use of batteries during a blackout. In this study the fuel cell was initially inerted with nitrogen at the cathode and thus the start-up procedures occurred in two stages: gas supply in open-circuit and load connection. The influence of the current time-profile, the cell voltage at the connection and the gas flow rates on the voltage variation were investigated using a segmented fuel cell permitting the measurements of the internal local currents. We found that the voltage during the filling of the cathode is not sufficient to determine which fraction of the cathode was filled with oxygen. In the case of a step change in current, the start-up time decreases as the voltage at the moment the cell is connected increases. In response to a ramp, the asymptotic power value is reached quickly.  相似文献   

2.
This paper studies the transient response of the output voltages of a Ballard-Mark-V 35-cell 5 kW proton exchange membrane fuel cell (PEMFC) stack with power conversion for applications in autonomous underwater vehicles (AUVs) under load changes. Four types of pulse-width modulated (PWM) dc-dc power converters are employed to connect to the studied fuel cell in series for converting the unregulated fuel cell stack voltage into the desired voltage levels. The fuel cell model in this paper consists of the double-layer charging effect, gases diffusion in the electrodes, and the thermodynamic characteristic; PWM dc-dc converters are assumed to operate in continuous-conduction mode with a voltage-mode control compensator. The models of the study's fuel cell and PWM dc-dc converters have been implemented in a Matlab/SIMULINKTM environment. The results show that the output voltages of the studied PEMFC connected with PWM dc-dc converters during a load change are stable. Moreover, the model can predict the transient response of hydrogen/oxygen out flow rates and cathode and anode channel temperatures/pressures under sudden change in load current.  相似文献   

3.
This paper presents a stationary and dynamic study of the advantages of using a regulating valve for the cathode outlet flow in combination with the compressor motor voltage as manipulated variables in a fuel cell system. At a given load current, the cathode input and output flowrate determine the cathode pressure and stoichiometry, and consequently determine the oxygen partial pressure, the generated voltage and the compressor power consumption. In order to maintain a high efficiency during operation, the cathode output regulating valve has to be adjusted to the operating conditions, specially marked by the current drawn from the stack. Besides, the appropriate valve manipulation produces an improvement in the transient response of the system. The influence of this input variable is exploited by implementing a predictive control strategy based on dynamic matrix control (DMC), using the compressor voltage and the cathode output regulating valve as manipulated variables. The objectives of this control strategy are to regulate both the fuel cell voltage and oxygen excess ratio in the cathode, and thus, to improve the system performance. All the simulation results have been obtained using the MATLAB-Simulink environment.  相似文献   

4.
This paper experimentally explores the spatiotemporal distribution and variation characteristics of temperature in an open cathode proton exchange membrane fuel cell stack based on thermal imager and thermocouples inserted in the cathode flow channels. The temperature distribution and evolution during the dynamic process are analyzed in detail. Besides, the effects of air flow rate and load current on the thermal characteristics of the stack are also investigated. The results show that during the start-up, the hot spot first sprouts in the central area and then spreads rapidly to the surrounding area. During the shutdown, the central and lower regions are first cooled, followed by the hydrogen inlet region, and finally the endplates. The temperature during the load stepwise increase is inconsistent with that during the load stepwise decrease, showing a temperature drift phenomenon. Moreover, there is a time lag in the response of temperature and voltage to changes in current.  相似文献   

5.
Durability and start-up ability in sub-zero environment are two technical bottlenecks of vehicular polymer electrolyte membrane (PEM) fuel cell systems. With exhaust gas recirculation on the anode and cathode side, the cell voltage at low current density can be reduced, and the membrane can be humidified without external humidifier. They may be helpful to prolong the working lifetime and to promote the start-up ability. This paper presents an experimental study on a PEM fuel cell system with anodic and cathodic recirculation. The system is built up based on a 10 kW fuel cell stack, which consists of 50 cells and has an active area of 261 cm2. A cathodic recirculation pump and a hydrogen recirculation pump are utilized on the cathode and anode side, respectively. Key parameters, e.g., stack current, stack voltage, cell voltage, air flow, relative humidity on the cathode side, oxygen concentration at the inlet and outlet of the cathode side, are measured. Results show that: 1) with a cathodic recirculation the system gets good self-humidification effect, which is similar to that with an external humidifier; 2) with a cathodic recirculation and a reduction of fresh air flux, the cell voltage can be obviously reduced; 3) with an anodic recirculation the cell voltage can also be reduced due to a reduction in the hydrogen partial pressure, the relative humidity on the cathode side is a little smaller than the case with only cathode recirculation. It indicates that, for our stack the cathodic recirculation is effective to clamp cell voltage at low current density, and a self-humidification system is possible with cathodic recirculation. Further study will focus on the dynamic model and control of the dual recirculation fuel cell system.  相似文献   

6.
This work establishes three-dimensional transient numerical models of proton exchange membrane fuel cells (PEMFCs) with different cathode flow field designs. Exactly how flow field design and voltage loading affect the transient characteristics of the PEMFCs are examined. When the operating voltage instantaneously drops from 0.7 V to 0.5 V, the electrochemical reactions increase. To ensure sufficient oxygen supply for the fuel cell, the oxygen mass fractions are high in the cathode gas diffusion and cathode catalyst layers, causing overshoot of the local current density distribution. When the operating voltage suddenly increases from 0.5 V to 0.7 V, the electrochemical reactions become mild, and furthermore the oxygen mass fraction distribution becomes low, leading to undershoot of the local current density distribution. The transient response time required to reach the steady state for the parallel flow field with baffle design is longest in the event of overshoot or undershoot among the different cathode flow field designs. The overshoot or undershoot phenomena become more obvious with larger voltage loading variations. Moreover, the transient response time for the Z-type flow field with baffle design is longer than for the Z-type flow field design.  相似文献   

7.
Transient characteristics of proton exchange membrane (PEM) fuel cells with parallel and interdigitated flow fields upon changes in voltage load were investigated by applying a three-dimensional, two-phase model. Effects of channel to rib width ratios and cathode inlet flow rates on the transient response of PEM fuel cell were examined in detail. Current overshoot and undershoot occur because the time scale for the voltage change is much shorter than for the oxygen concentration changes. Therefore, the oxygen concentrations on the cathode diffusion layer-catalyst layer interface immediately after the voltage changes are essentially the same as before the voltage changes, which results in higher reaction rates causing overshoots when the voltage decreases or lower reaction rates causing undershoots when the voltage increases. The predictions also show that as the voltage decrease rate is reduced, the overshoot peak weakens and the response time shortens. Since the interdigitated flow field has higher oxygen concentrations on the cathode diffusion layer-catalyst layer interface due to the forced convection, the overshoot peaks and the undershoot valleys are all greater than for the parallel flow field. For both flow fields, larger channel to rib width ratios cause larger overshoots, smaller undershoots and longer response times.  相似文献   

8.
The dynamic performance is a very important evaluation index of proton exchange membrane (PEM) fuel cells used for real application, which is mostly related with water, heat and gas management. A commercial PEM fuel cell system of Nexa module is employed to experimentally investigate the dynamic behavior and transient response of a PEM fuel cell stack and reveal involved influential factors. Five groups of dynamic tests are conducted and divided into different stage such as start-up, shut-down, step-up load, regular load variation and irregular load variation. It is observed that the external load changes the current output proportionally and reverses stack voltage accordingly. The purge operation benefits performance recovery and enhancement during a constant load and its time strongly depends on the operational current level. Overshoot and undershoot behaviors are observed during transience. But the current undershoot does not appear due to charge double-layer effect. Additionally, magnitudes of the peaks of the voltage overshoot and undershoot vary at different current levels. The operating temperature responds fast to current load but changes slowly showing an arc-like profile without any overshoot and undershoot events. The air flow rate changes directly following the dynamic load demand. But the increased amount of air flow rate during different step-change is not identical, which depends on the requirement of internal reaction and flooding intensity. The results can be utilized for validation of dynamic fuel cell models, and regarded as reference for effective control and management strategies.  相似文献   

9.
In this study, the steady-state performance and dynamic behavior of a commercial 10-cell Proton Exchange Membrane (PEM) fuel cell stack was experimentally investigated using a self-developed PEM fuel cell test stand. The start-up characteristics of the stack to different current loads and dynamic responses after current step-up to an elevated load were investigated. The stack voltage was observed to experience oscillation at air excess coefficient of 2 due to the flooding/recovery cycle of part of the cells. In order to correlate the stack voltage with the pressure drop across the cathode/anode, fast Fourier transform was performed. Dominant frequency of pressure drop signal was obtained to indicate the water behavior in cathode/anode, thereby predicting the stack voltage change. Such relationship between frequency of pressure drop and stack voltage was found and summarized. This provides an innovative approach to utilize frequency of pressure drop signal as a diagnostic tool for PEM fuel cell stack dynamic behaviors.  相似文献   

10.
The purpose of the current study is to numerically predict the start up behavior of a tubular solid oxide fuel cell (SOFC) using a 2-D transient model. The developed model provides the transient response of the start-up mode as well as the steady state operation of the SOFC. A code based on finite volume method is utilized to solve the transient nonlinear transport equations of the cell (momentum, species and energy equations). To account for the Ohmic losses and Joule heating of the current that passes through the cell body, a discretized network circuit is adopted. The local electrochemical parameters are calculated based on the local pressure, temperature, and concentrations of the species. At each time step an iterative procedure is used to solve the electrochemical, electrical and transport equations simultaneously. The model predicts the cell output voltage, the local EMF and the state variables (pressure, temperature and species concentration) during the start up. It also predicts the cell heat-up rate for hot input gases as well as the start up time of the SOFC. The results show that the gases mass flow rate and temperature affect the heat-up rate. Also during the start-up, the cell electrical response is about 2.5 times quicker than the cell temperature response. The start-up time for the cell output voltage is about 50 min.  相似文献   

11.
Transfer (crossover) leaks initiated by the chemical deterioration of the PEM and the resulting performance degradation has been previously identified as one the primary life-limiting factors in fuel cells. The leaks result in reduced oxygen levels in affected cells, where a secondary factor intimately related to this is high hydrogen emissions in the cathode exhaust when some cells operate in fully-oxygen-starved conditions. This paper builds on previous work that developed a unified fuel cell model that predicts cell voltage behavior under driving (normal) and driven (oxygen-starved) conditions, where this latest analysis now explicitly includes hydrogen pumping and emissions release when operating under oxygen-depleted conditions. In addition to considering diffusion effects and electrochemical effects, the model tracks the evolution of hydrogen in the cell cathode when no oxygen remains to generate water. The voltage response of the model under normal (non-starved) conditions is first validated for steady-state and transient (current step-change) conditions against previously published experiments, and then the model is used to simulate the cell voltage and stack hydrogen emissions behavior measured from three different commercially available fuel cell stacks. In the first fuel cell stack, a 9-cell commercial short stack, only one cell was fully oxygen-starved. Excellent agreement is seen between the measured and simulated hydrogen release concentrations (where air injection was used downstream of the stack to ensure adequate oxygen levels for measurement with a catalytic hydrogen sensor and to condense water vapor in the exhaust), where the role of hydrogen pumping is seen to contribute significantly to the release behavior. The first fuel cell stack is then used transiently in comparison with testing performed where the hydrogen injection level in the cell is changed quickly, where the model gives good agreement with the measured emission response and cell voltage behavior. Further comparisons with test data from a second and third 10-cell commercial short stack models operated with stack inlet hydrogen injection show good agreement with measured emissions onset versus current, where the observed threshold of starvation and emissions occurs a few percent sooner in the third model than the simulation, but the overall behavior is well predicted.  相似文献   

12.
The transient response of a proton exchange membrane fuel cell (PEMFC) was measured for various cathode gas compositions and gas utilisations (fraction of supplied reactant gas which is consumed in the fuel cell reaction). For a PEMFC operated on pure hydrogen and oxygen, the cell voltage response to current steps was fast, with response times in the range 0.01–1 s, depending on the applied current. For a PEMFC supplied with air as cathode gas, an additional relaxation process related to oxygen transport caused a slower response (approximately 0.1–2 s depending on the applied current). Response curves up to approximately 0.01 s were apparently unaffected by gas composition and utilisation and were most likely dominated by capacitive discharge of the double layer and reaction with surplus oxygen residing in the cathode. The utilisation of hydrogen had only a minor effect on the response curves, while the utilisation of air severely influenced the PEMFC dynamics. Results suggested that air flow rates should be high to obtain rapid PEMFC response.  相似文献   

13.
The proton exchange membrane fuel cell (PEMFC) has become a promising candidate for the power source of electrical vehicles because of its low pollution, low noise and especially fast startup and transient responses at low temperatures. A transient, three-dimensional, non-isothermal and single-phase mathematical model based on computation fluid dynamics has been developed to describe the transient process and the dynamic characteristics of a PEMFC with a serpentine fluid channel. The effects of water phase change and heat transfer, as well as electrochemical kinetics and multicomponent transport on the cell performance are taken into account simultaneously in this comprehensive model. The developed model was employed to simulate a single laboratory-scale PEMFC with an electrode area about 20 cm2. The dynamic behavior of the characteristic parameters such as reactant concentration, pressure loss, temperature on the membrane surface of cathode side and current density during start-up process were computed and are discussed in detail. Furthermore, transient responses of the fuel cell characteristics during step changes and sinusoidal changes in the stoichiometric flow ratio of the cathode inlet stream, cathode inlet stream humidity and cell voltage are also studied and analyzed and interesting undershoot/overshoot behavior of some variables was found. It was also found that the startup and transient response time of a PEM fuel cell is of the order of a second, which is similar to the simulation results predicted by most models. The result is an important guide for the optimization of PEMFC designs and dynamic operation.  相似文献   

14.
In this study, the effects of the start-up temperature, load condition and flow arrangement on the cold start characteristics and performance of a proton exchange membrane fuel cell (PEMFC) are investigated through in-situ experiments with the simultaneous measurements of the current and temperature distributions. Rather than the commonly recognized cold start failure mode due to the ice blockage in cathode catalyst layer (CL), another failure mode due to the ice blockage in flow channel and gas diffusion layer (GDL) leading to significantly high pressure drop through cathode flow field is observed at a start-up temperature just below the lowest successful start-up temperature. Three ice formation mechanisms are proposed, corresponding to the ice formations in cathode CL, GDL and flow channel. The general distributions of current densities and temperatures during the constant current cold start processes are similar to the constant voltage cold start processes, except that the temperatures at the end of the constant current cold start processes are more evenly distributed over the active reaction area because of the increased heat generation rates. The cold start characteristics are mainly dominated by the cathode flow, and changing the flow arrangement has unimportant impact on the cold start performance.  相似文献   

15.
Single fuel cells running independently are often used for fundamental studies of water transport. It is also necessary to assess the dynamic behavior of fuel cell stacks comprised of multiple cells arranged in series, thus providing many paths for flow of reactant hydrogen on the anode and air (or pure oxygen) on the cathode. In the current work, the flow behavior of a fuel cell stack is simulated by using a single-cell test fixture coupled with a bypass flow loop for the cathode flow. This bypass simulates the presence of additional cells in a stack and provides an alternate path for airflow, thus avoiding forced convective purging of cathode flow channels. Liquid water accumulation in the cathode is shown to occur in two modes; initially nearly all the product water is retained in the gas diffusion layer until a critical saturation fraction is reached and then water accumulation in the flow channels begins. Flow redistribution and fuel cell performance loss result from channel slug formation. The application of in-situ neutron radiography affords a transient correlation of performance loss to liquid water accumulation. The current results identify a mechanism whereby depleted cathode flow on a single cell leads to performance loss, which can ultimately cause an operating proton exchange membrane fuel cell stack to fail.  相似文献   

16.
In this study, a kW-grade air-cooled proton exchange membrane fuel cell (PEMFC) stack with a dead-end anode (DEA) operation is designed and manufactured. The gravity-assisted drainage principle is applied for the stack to design the wettability of gas diffusion layers (GDLs) and the anode channel geometry, which can help the liquid water that diffuses to the anode to drain out of the anode porous electrode and move down the anode channel outlets. As a result, the stack can stably operate in a long purge interval of 268 s and in a short purge time of 2 s. In addition, using this design, only four small-power fans are employed to pump air to the cathode to provide oxygen for the electrochemical reaction and cool the stack. With a constant load current of 30, 45, or 60 A, the stack output voltage is experimentally tested at various cathode air flow rates (CAFRs). The local temperatures (60 measurement points) inside the stack and the pressure differences across anode channels are also monitored to understand heat dissipation and the back diffusion of liquid water. In a wide range of operating conditions, the designed stack possesses superior and stable voltage output characteristics with relatively uniform temperature distributions. The measured maximum output power is 3.83 kW, and the parasitic powers of fans are only 80~112 W.  相似文献   

17.
A transient, one-dimensional thermal model for a generic polymer electrolyte fuel cell (PEFC) stack is developed to investigate the cold-start ability and the corresponding energy requirement over different operating and ambient conditions. The model is constructed by applying the conservation of energy on each stack component and connecting the component's relevant boundaries to form a continuous thermal model. The phase change of ice and re-circulation of coolant flow are included in the analytical framework and their contribution to the stack thermal mass and temperature distribution of the components is also explored. A parametric study was conducted to determine the governing parameters, relative impact of the thermal mass of each stack component and ice, and anticipated temperature distribution in the stack at start-up for various operating conditions. Results indicate that 20 cells were sufficient to accurately experimentally and computationally simulate the full size stack behavior. It was observed that an optimum range of operating current density exists for a chosen stack design, in which rapid start-up of the stack from sub-zero condition can be achieved. Thermal isolation of the stack at the end plates is recommended to reduce the start-up time. Additionally, an end plate thickness exceeding a threshold value has no added effect on the stack cold-start ability. Effect of various internal and external heating mechanisms on the stack start-up were also investigated, and flow of heated coolant above 0 °C was found to be the most effective way to achieve the rapid start-up.  相似文献   

18.
Experiments were conducted on two different cathode air cooled high temperature PEM (HTPEM) fuel cell stacks; a 30 cell 400 W prototype stack using two bipolar plates per cell, and a 65 cell 1 kW commercial stack using one bipolar plate per cell. The work seeks to examine the use of different heating strategies and find a strategy suited for fast start-up of the HTPEM fuel cell stacks. Fast start-up of these high temperature systems enables use in a wide range of applications, such as automotive and auxiliary power units, where immediate system response is needed. The development of a dynamic model to simulate the temperature development of a fuel cell stack during heating can be used for assistance in system and control design. The heating strategies analyzed and tested reduced the start-up time of one of the fuel cell stacks from 1 h to about 6 min.  相似文献   

19.
This report presents experimental results derived from a Proton Exchange Membrane fuel cell with a serpentine flow plate design. The investigation seeks to explore the effects of some parameters like cell operational temperature, humidification and atmospheric pressure on the general performance and efficiency of PEM fuel cell using MATLAB. A number of codes were written to generate the polarization curve for a single stack and five (5) cell stack fuel cell at various operating conditions. Detailed information of hydrogen and oxygen consumption and the effect they have on the fuel cell performance were critically analysed. The investigation concluded that the open circuit voltage generated was less than the theoretical voltage predicted in the literature. It was also noticed that an increase in current or current density reduced the voltage derived from the fuel cell stack. The experiment also clearly confirmed that when more current is being drawn from the fuel cell, more water will also be generated at the cathode section of the cell hence the need for an effective water management to improve the performance of the fuel cell. Other parameters like the stack efficiency and power density were also analysed using the experimental results obtained.  相似文献   

20.
Proton exchange membrane fuel cells (PEMFCs) with a dead-ended anode and cathode can reach high hydrogen and oxygen utilization by a relatively simple system. Nevertheless, the accumulation of the water in the anode and cathode channels can lead to a local fuel starvation deteriorating the performance and the durability of PEMFCs. In this study, a novel design for a polymer electrolyte membrane (PEM) fuel-cell stack was presented which could achieve higher fuel utilization without using hydrogen and oxygen recirculation devices such as hydrogen pumps or ejectors that consume parasitic power and require additional control schemes. The basic concept of the innovatively proposed design was to divide the cells of a stack into several stages by conducting the outlet gas of each stage to a separator and reentering it into the next stage; thereby, a multistage anode and cathode system was prepared. In this relatively ingenious design, a higher gaseous flow rate was maintained at the cell outlet, even under dead-end conditions resulted in a reduced purge-gas emission by avoiding the accumulation of liquid water in the cells. The results revealed that proposed design had the same polarization curve as the open-end mode, leading to an enhanced PEMFC performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号