首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Research into novel internal combustion engines requires consideration of the diversity in future fuels in an attempt to reduce drastically CO2 emissions from vehicles and promote energy sustainability. Hydrogen has been proposed as a possible fuel for future internal combustion engines and can be produced from renewable sources. Hydrogen’s wide flammability range allows higher engine efficiency than conventional fuels with both reduced toxic emissions and no CO2 gases. Most previous work on hydrogen engines has focused on spark-ignition operation. The current paper presents results from an optical study of controlled autoignition (or homogeneous charge compression ignition) of hydrogen in an engine of latest spark-ignition pentroof combustion chamber geometry with direct injection of hydrogen (100 bar). This was achieved by a combination of inlet air preheating in the range 200–400 °C and residual gas recirculated internally by negative valve overlap. Hydrogen fuelling was set to various values of equivalence ratio, typically in the range ? = 0.40–0.63. Crank-angle resolved flame chemiluminescence images were acquired for a series of consecutive cycles at 1000 RPM in order to calculate in-cylinder rates of flame expansion and motion. Planar Laser Induced Fluorescence (LIF) of OH was also applied to record more detailed features of the autoignition pattern. Single and double (i.e. ‘split’ per cycle) hydrogen injection strategies were employed in order to identify the effect of mixture preparation on autoignition’s timing and spatial development. An attempt was also made to review relevant in-cylinder phenomena from the limited literature on hydrogen-fuelled spark-ignition optical engines and make comparisons were appropriate.  相似文献   

2.
Hydrogen and n-butanol are superior alternative fuels for SI engines, which show high potential in improving the combustion and emission characteristics of internal combustion engines. However, both still have disadvantages when applied individually. N-butanol fuel has poor evaporative atomization properties and high latent heat of vaporization. Burning n-butanol fuel alone can lead to incomplete combustion and lower temperature in the cylinder. Hydrogen is not easily stored and transported, and the engine is prone to backfire or detonation only using hydrogen. Therefore, this paper investigates the effects of hydrogen direct injection strategies on the combustion and emission characteristics of n-butanol/hydrogen dual-fuel engines based on n-butanol port injection/split hydrogen direct injection mode and the synergistic optimization of their characteristics. The energy of hydrogen is 20% of the total energy of the fuel in the cylinder. The experimental results show that a balance between dynamics and emission characteristics can be found using split hydrogen direct injection. Compared with the second hydrogen injection proportion (IP2) = 0, the split hydrogen direct injection can promote the formation of a stable flame kernel, shorten the flame development period and rapid combustion period, and reduce the cyclic variation. When the IP2 is 25%, 50% and 75%, the engine torque increases by 0.14%, 1.50% and 3.00% and the maximum in-cylinder pressure increases by 1.9%, 2.3% and 0.6% respectively. Compared with IP2 = 100%, HC emissions are reduced by 7.8%, 15.4% and 24.7% and NOx emissions are reduced by 16.4%, 13.8% and 7.9% respectively, when the IP2 is 25%, 50% and 75%. As second hydrogen injection timing (IT2) is advanced, CA0-10 and CA10-90 show a decreasing and then increasing trend. The maximum in-cylinder pressure rises and falls, and the engine torque gradually decreases. The CO emissions show a trend of decreasing and remaining constant. However, the trends of HC emissions and NOx emissions with IT2 are not consistent at different IP2. Considering the engine's dynamics and emission characteristics, the first hydrogen injection proportion (IP1) = 25% plus first hydrogen injection timing (IT1) = 240°CA BTDC combined with IP2 = 75% plus IT2 = 105°CA BTDC is the superior split hydrogen direct injection strategy.  相似文献   

3.
The use of hydrogen in internal combustion engines is pointed out as an alternative to reduce greenhouse gas emissions. In applications that require high levels of torque and low engine speeds, compression ignition (CI) engines are more appropriate. However, because of the high auto-ignition temperature of hydrogen, its use in these engine types is more suitable when the dual-fuel concept is applied. This study comprehensively investigates, through experimental techniques, the use of hydrogen port-injection in a four-stroke single-cylinder CI engine operating with the renewable diesel-like fuels hydrotreated vegetable oil (HVO) and farnesane, in comparison to fossil diesel dual-fuel operation. In this sense, the present work aims to fill a gap in the literature by performing a novel analysis of dual-fuel operation with hydrogen, considering different substitution fractions, and using groundbreaking biofuels, such as HVO and farnesane. The results showed that in-cylinder pressure and temperature were increased with H2 enrichment for every pilot fuel, but green diesel fuels presented lower values than those for diesel operation. Furthermore, hydrogen port injection slightly delayed the start of combustion and increased the ignition delay, but a reduction in both premixed and diffusion combustion duration was observed. Reductions in PM, CO, and CO2 emissions were reported during H2 addition for every pilot fuel, while increased NOx was observed. Despite this increase, both HVO and farnesane decreased the emissions of this pollutant in single and dual-fuel operations, compared with fossil diesel. In addition, both renewable diesel fuels presented higher BTE than diesel for every studied H2 mass flow.  相似文献   

4.
The global rush for decarbonization and the more restrictive emission regulations are pushing the research for cleaner powertrains to the transport sector. In this sense, this work contributes with an experimental investigation of the performance and emissions of a single-cylinder SI engine operating under lean-burn hydrogen combustion. Its performance, combustion parameters, exhaust emissions, and indicated efficiency for a wide range of mixture dilutions are then compared to methane under similar engine load conditions. Hydrogen achieved stable combustion up to lambda 3.4, presenting zero CO emission and very low HC emission for all tested operating conditions. Hydrogen operation also presented zero NOx emissions for conditions leaner than lambda 2.2 and 3.0 at 2000 and 3000 rpm, respectively, however, the NOx emissions increase as the mixture is enriched. The high in-cylinder pressure rise rate limited the operation at mixtures richer than lambda 1.3 at 2000 rpm. When compared to methane, the hydrogen allows de-throttle the engine to burn lean mixtures maintaining a proper flame speed, resulting in lower pumping losses, lower pollutants emissions for most of the conditions tested, and higher indicated efficiency, making hydrogen a promising fuel to replace conventional fuels on cleaner SI engines.  相似文献   

5.
Environmental concerns and limited resource of petroleum fuels have caused interests in the development of alternative fuels for internal combustion (IC) engines. For diesel engines, alcohols are receiving increasing attention because they are oxygenated and renewable fuels. Therefore, in this study, the effect of injection timing on the exhaust emissions of a single cylinder, naturally aspirated, four-stroke, direct injection diesel engine has been experimentally investigated by using methanol-blended diesel fuel from 0% to 15% with an increment of 5%. The tests were conducted for three different injection timings (15°, 20° and 25 °CA BTDC) at four different engine loads (5 Nm, 10 Nm, 15 Nm, 20 Nm) at 2200 rpm. The experimental test results showed that Bsfc, NOx and CO2 emissions increased as BTE, smoke opacity, CO and UHC emissions decreased with increasing amount of methanol in the fuel mixture. When compared the results to those of original injection timing, NOx and CO2 emissions decreased, smoke opacity, UHC and CO emissions increased for the retarded injection timing (15 °CA BTDC). On the other hand, with the advanced injection timing (25 °CA BTDC), decreasing smoke opacity, UHC and CO emissions diminished, and NOx and CO2 emissions boosted at all test conditions. In terms of Bsfc and BTE, retarded and advanced injection timings gave negative results for all fuel blends in all engine loads.  相似文献   

6.
In recent years, there has been a rapid transition from internal combustion engines to hybrid and electric vehicles. It is an inevitable fact that the dominance of internal combustion engines in the market will continue for many years due to the charging and battery problems in these vehicles. Therefore, it is an important issue to improve the performance and emissions of internal combustion engines by making them work with alternative energy sources. In this study, hydrogen-diesel dual fuel mode was used in a dual-fuel compression ignition single cylinder engine with common rail fuel injection system and electronically controlled gas fuel system. The study was carried out at constant speed (1850 rpm), different load (3-4.5-6-7.5-9 Nm) and different hydrogen injector opening amounts (1.6-1.8-2.0 ms). The effects of hydrogen energy ratios obtained with different hydrogen injector opening amount on engine performance and emissions were examined. According to the results, it was determined that the in-cylinder pressure values increased at medium and high loads, and the specific energy consumption decreased. When the emission values were examined, it was determined that there was an increase in NO emissions and a significant decrease in other emissions. However, increasing the hydrogen energy ratio above 14% adversely affected engine performance and emissions.  相似文献   

7.
Natural gas, which is among the alternative fuels, has become widespread in the transportation as it is both economical and environmentally friendly. While the use of natural gas is at a significant level in spark ignition engines, it has not yet been implemented in compression ignition engines (CI) as it worsens combustion due to ignition delay. In CI engines, however, the combustion properties of natural gas (NG) can be improved by adding hydrogen (H2) to NG. This is one of the methods applied to use natural gas in CI engines. In this experimental study, two different volumetric rates of NG and NG/H2 mixtures were added to the combustion air in a CI engine, and engine performance and emissions were examined under different engine loads. The experiments were performed at two different engine speeds, four different engine loads and no-load condition. An engine cylinder pressure of 59.16 bar, which is the closest value to the 59.39 bar obtained in the use of diesel fuel, was obtained at 1500 rpm for “Diesel + NG(500 g/h)” and 59.9 bar (highest values) was obtained for “Diesel + (500 g/h) [80%NG+20%H2]" at 1750 rpm. For “Diesel + NG(250 g/h)” (Mix1) and “Diesel + NG(500 g/h)” (Mix2), as the engine speed increases, at the point where the maximum in-cylinder pressure is obtained occurs further to the right from top dead center (TDC). With the addition of 500 g/h NG, an increase of 4.5% was achieved in the cylinder pressure at full load, while an increase of 6.5% was achieved in the case of using “Diesel + (500 g/h) [80%NG+20%H2]". Although the effect of the NG and NG/H2 mixtures on in-cylinder pressure was small, the fuel consumption and thermal efficiency improved. Substantial improvements in hydrocarbon (HC) emissions were observed with the use of “Diesel + (250 g/h)[80%NG+20%H2]”. Carbon dioxide (CO2) emissions decreased with speed increase, but no significant differences in terms of CO2 emissions were observed between the mixtures. There was a maximum difference of 15% between the diesel and the mixtures in CO2 emissions. Although there was a decrease in nitrogen oxide (NOx) levels with the increase in engine speed, the lowest NOx emissions of 447.6 ppmvol was observed in “Diesel + NG(250 g/h)” (Mix1) at 1750 rpm at maximum load.  相似文献   

8.
The development of alternative fuels is important in the fight against climate change. Both hydrogen and ammonia are renewable energy sources and are carbon-free combustible fuels. In a recent experimental study, the performance and emission characteristics of a spark-ignition engine burning a premixed hydrogen/ammonia/air mixture were evaluated. The manifold absolute pressure was adjusted to 61 kPa and the engine speed was stabilized at 1300 rpm. The difference between a mixture with a 2.2% volume fraction of ammonia and a pure hydrogen fuel was analyzed in comparison. Specifically, the addition of ammonia increased the ignition delay and flame development periods and reduced the rate of in-cylinder pressure rise. In conjunction with the ignition timing strategy, the addition of ammonia did not affect the engine performance. Nitrogen oxides emissions are increased due to the addition of ammonia. The experimental results suggest that ammonia can be used as a combustion inhibitor, which provides a new reference for the development of hydrogen-fuelled engines.  相似文献   

9.
Compared with traditional hydrocarbon fuels, hydrogen provides a high-energy content and carbon-free source of energy rendering it an attractive option for internal combustion engines. Co-combusting hydrogen with other fuels offers significant advantages with respect to thermal efficiency and carbon emissions.This study seeks to investigate the potential and limitations of multi-zone combustion models implemented in the GT-Power software package to predict dual fuel operation of a hydrogen-diesel common rail compression ignition engine. Numerical results for in-cylinder pressure and heat release rate were compared with experimental data. A single cylinder dual-fuel model was used with hydrogen being injected upstream of the intake manifold. During the simulations low (20 kW), medium (40 kW) and high (60 kW) load conditions were tested with and without exhaust gas recirculation (EGR) and at a constant engine speed of 1500 rpm. Both single and double diesel injection strategies were examined with hydrogen energy share ratio being varied from 0 to 57% and 0–42 respectively. This corresponds to a range in hydrogen air-equivalence ratios of approximately 0–0.29.The results show that for the single-injection strategy, the model captures in-cylinder pressure and heat release rate with good accuracy across the entire load and hydrogen share ratio range. However, it appears that for high hydrogen content in the charge mixture and equivalence ratios beyond the lean flammability limit, the model struggles to accurately predict hydrogen entrainment leading to underestimated peak cylinder pressures and heat release rates. For double-injection cases the model shows good agreement for hydrogen share ratios up to 26%. However, for higher energy share ratios the issue of erroneous hydrogen entrainment into the spray becomes more accentuated leading to significant under-prediction of heat release rate and in-cylinder pressure.  相似文献   

10.
The high flammability of hydrogen gas gives it a steady flow without throttling in engines while operating. Such engines also include different induction/injection methods. Hydrogen fuels are encouraging fuel for applications of diesel engines in dual fuel mode operation. Engines operating with dual fuel can replace pilot injection of liquid fuel with gaseous fuels, significantly being eco-friendly. Lower particulate matter (PM) and nitrogen oxides (NOx) emissions are the significant advantages of operating with dual fuel.Consequently, fuels used in the present work are renewable and can generate power for different applications. Hydrogen being gaseous fuel acts as an alternative and shows fascinating use along with diesel to operate the engines with lower emissions. Such engines can also be operated either by injection or induction on compression of gaseous fuels for combustion by initiating with the pilot amount of biodiesel. Present work highlights the experimental investigation conducted on dual fuel mode operation of diesel engine using Neem Oil Methyl Ester (NeOME) and producer gas with enriched hydrogen gas combination. Experiments were performed at four different manifold hydrogen gas injection timings of TDC, 5°aTDC, 10°aTDC and 15°aTDC and three injection durations of 30°CA, 60°CA, and 90°CA. Compared to baseline operation, improvement in engine performance was evaluated in combustion and its emission characteristics. Current experimental investigations revealed that the 10°aTDC hydrogen manifold injection with 60°CA injection duration showed better performance. The BTE of diesel + PG and NeOME + PG operation was found to be 28% and 23%, respectively, and the emissions level were reduced to 25.4%, 14.6%, 54.6%, and 26.8% for CO, HC, smoke, and NOx, respectively.  相似文献   

11.
Hydrogen has many excellent combustion properties that can be used for improving combustion and emissions performance of gasoline-fueled spark ignition (SI) engines. In this paper, an experimental study was carried out on a four-cylinder 1.6 L engine to explore the effect of hydrogen addition on enhancing the engine lean operating performance. The engine was modified to realize hydrogen port injection by installing four hydrogen injectors in the intake manifolds. The injection timings and durations of hydrogen and gasoline were governed by a self-developed electronic control unit (DECU) according to the commands from a calibration computer. The engine was run at 1400 rpm, a manifold absolute pressure (MAP) of 61.5 kPa and various excess air ratios. Two hydrogen volume fractions in the total intake of 3% and 6% were applied to check the effect of hydrogen addition fraction on engine combustion. The test results showed that brake thermal efficiency was improved and kept roughly constant in a wide range of excess air ratio after hydrogen addition, the maximum brake thermal efficiency was increased from 26.37% of the original engine to 31.56% of the engine with a 6% hydrogen blending level. However, brake mean effective pressure (Bmep) was decreased by hydrogen addition at stoichiometric conditions, but when the engine was further leaned out Bmep increased with the increase of hydrogen addition fraction. The flame development and propagation durations, cyclic variation, HC and CO2 emissions were reduced with hydrogen addition. When excess air ratio was approaching stoichiometric conditions, CO emission tended to increase with the addition of hydrogen. However, when the engine was gradually leaned out, CO emission from the hydrogen-enriched engine was lower than the original one. NOx emissions increased with the increase of hydrogen addition due to the raised cylinder temperature.  相似文献   

12.
Dual-injection strategies in spark-ignition engines allow the in-cylinder blending of two different fuels at any blend ratio, when simultaneously combining port fuel injection (PFI) and direct-injection (DI). Either fuel can be used as the main fuel, depending on the engine demand and the fuel availability. This paper presents the preliminary investigation of such a flexible, bi-fuel concept using a single cylinder spark-ignition research engine. Gasoline has been used as the PFI fuel, while various mass fractions of gasoline, ethanol and 2,5-dimethylfuran (DMF) have been used in DI. The control of the excess air ratio during the in-cylinder mixing of two different fuels was realized using the cross-over theory of the carbon monoxide and oxygen emissions concentrations. The dual-injection results showed how the volumetric air flow rate, total input energy and indicated mean effective pressure (IMEP) increases with deceasing PFI mass fraction, regardless of the DI fuel. The indicated efficiency increases when using any ethanol fraction in DI and results in higher combustion and fuel conversion efficiencies compared to gasoline. Increasing the DMF mass fraction in DI reduces the combustion duration more significantly than with increased fractions of ethanol or gasoline in DI. The hydrocarbon (HC), oxides of nitrogen (NOx) and carbon dioxide (CO2) emissions mostly reduce when using any gasoline or ethanol fraction in DI. When using DMF, the HC emissions reduce, but the NOx and CO2 emissions increase.  相似文献   

13.
Starting a spark-ignited engine with the gasoline-hydrogen mixture   总被引:1,自引:0,他引:1  
Because of the increased fuel-film effect and dropped combustion temperature, spark-ignited (SI) gasoline engines always expel large amounts of HC and CO emissions during the cold start period. This paper experimentally investigated the effect of hydrogen addition on improving the cold start performance of a gasoline engine. The test was carried out on a 1.6-L, four-cylinder, SI engine equipped with an electronically controlled hydrogen injection system. A hybrid electronic control unit (HECU) was applied to control the opening and closing of hydrogen and gasoline injectors. Under the same environmental condition, the engine was started with the pure gasoline and gasoline-hydrogen mixture, respectively. After the addition of hydrogen, gasoline injection duration was adjusted to ensure the engine to be started successfully. All cold start experiments were performed at the same ambient, coolant and oil temperatures of 17 °C. The test results showed that cylinder and indicated mean effective pressures in the first cycle were effectively improved with the increase of hydrogen addition fraction. Engine speed in the first 20 start cycles increased with hydrogen blending ratio. However, in later cycles, engine speed varied only a little with and without hydrogen addition due to the adoption of close loop control on engine speed. Because of the low ignition energy and high flame speed of hydrogen, both flame development and propagation durations were shortened after hydrogen addition. HC and CO emissions were dropped markedly after hydrogen addition due to the enhanced combustion process. When the hydrogen flow rate increased from 0 to 2.5 and 4.3 L/min, the instantaneous peak HC emissions were sharply reduced from 57083 to 17850 and 15738 ppm, respectively. NOx emissions were increased in the first 5 s and then reduced later after hydrogen addition.  相似文献   

14.
The sustainable reduction of greenhouse gas emissions from road transport requires solutions to achieve net-zero carbon dioxide emissions. Therefore, in addition to vehicles with electrified powertrains, such as those implemented in battery electric of fuel cell vehicles, internal combustion engines fueled with e-fuels or biofuels are also under discussion. An e-fuel that has come into focus recently, is hydrogen due to its potential to achieve zero tank-to-wheel and well-to-wheel carbon dioxide emissions when the electrolysis is powered by electricity from renewable sources. Due to the high laminar burning velocity, hydrogen has the potential for engine operation with high cylinder charge dilution by e.g. external exhaust gas recirculation or enleanment, resulting in increased efficiency. On the other hand, the high burning velocity and high adiabatic flame temperatures pose a challenge for engine cooling due to increased heat losses compared to conventional fuels. To further evaluate the use of hydrogen for small passenger car engines, a series production 1 L 3 cylinder gasoline engine provided by Ford Werke GmbH was modified for hydrogen direct injection. The engine was equipped with a high pressure external exhaust gas recirculation system to investigate charge dilution at stoichiometric operation. Due to limitations of the turbocharging system, very lean operation, which can achieve nitrogen oxides raw emissions below 10 ppm, was limited to part load operation below BMEP = 8 bar. Thus, a reduction of the nitrogen oxides emission level at high loads compared to stoichiometric operation was not possible. At stoichiometric operation with external exhaust gas recirculation engine efficiency can be increased significantly. The comparison of stoichiometric hydrogen and gasoline operation shows a reduced indicated efficiency with hydrogen with significant faster combustion of hydrogen at comparable centers of combustion. However, higher boost pressures would allow to achieve even higher indicated efficiencies by charge dilution compared to gasoline engine operation.  相似文献   

15.
Diesel engines are indispensable in daily life. However, the limited supply of petroleum fuels and the stringent regulations on such fuels are forcing researchers to study the use of hydrogen as a fuel. In this study, a diesel engine is operated using hydrogen–diesel dual fuel, where hydrogen is introduced into the intake manifold using an LPG-CNG injector and pilot diesel is injected using diesel injectors. The energy contents of the total fuel, 0%, 16%, 36% and 46% hydrogen (the 0% hydrogen energy fraction represents neat diesel fuel), were tested at 1300 rpm of constant engine speed and 5.1 kW of constant indicated power. According to test results, the indicated thermal efficiency of the engine decreases and the isfc increases with an increasing hydrogen energy fraction. Additionally, indicated specific CO, CO2 and smoke emissions decrease with an increasing percentage of hydrogen fuel. However, indicated specific NOx emissions do not change at the 16% hydrogen energy fraction, in other words, with an increase in the hydrogen amount (36% and 46% hydrogen energy fraction of total fuel), a dramatic increase (58.8% and 159.7%, respectively) is observed. Additionally, the peak in-cylinder pressure and the peak heat release rate values increase with the increasing hydrogen rate.  相似文献   

16.
The impact of dual fuel (diesel/hydrogen) on different performance aspects of CRDI diesel engines is investigated in this study. Amongst the fuel alternatives for IC (internal combustion) engines, the research described in this study recommended hydrogen as the least polluting and renewable in the long term. A CNG-LPG injector feeds hydrogen into the intake manifold, while diesel injectors pump pilot diesel to a DI engine adapted to hydrogen and diesel (dual-fuel mode). By maintaining 5.2 KW of consistent IP (Indicated Power) and engine speed at 1500 ± 10 rotations per minute (RPM), the hydrogen energy was varied in the dual fuel at 0% (100% diesel), 6%, 12%, 18% and 24%. With the increase in H2 energy proportion, a decrease (5.2% decrease at 24% HES) in the BSEC (brake specific energy consumption) and the engine's BTE (brake thermal efficiency) is improved (7.85% increase at 24% HES). When emissions are considered, indicated NOx increased (3.42%) while indicated CO2 (3.61%), CO (2.84%), and smoke (4.85%) decreased with an increase in the proportion of hydrogen. Along with this, it was noted that the peak HRR (heat release rate) of 69.8 J/deg and in-cylinder pressure of 80.8 bar which increased significantly with the increase in hydrogen rate.  相似文献   

17.
Butanol could reduce emissions and alleviate the energy crisis as a bio-fuel used on engines, but the production cost problem limits the application of butanol. During the butanol production, ABE (Acetone-Butanol-Ethanol) is a critical intermediate product. Many studies researched the direct application of ABE on engines instead of butanol to solve the production cost problem of butanol. ABE has the defects of large ignition energy and vaporization heat. Hydrogen is a gaseous fuel with small ignition energy and high flame temperature. In this research, ABE port injection combines with hydrogen direct injection, forming a stratified state of the hydrogen-rich mixture around the spark plug. The engine speed is 1500 rpm, and λ is 1. Five αH2 (hydrogen blending fractions: 0, 5%, 10%, 15%, 20%) and five spark timings (5°, 10°, 15°, 20°, 25° CA BTDC) are studied to observe the effects of them on combustion and emissions of the test engine. The results show that hydrogen addition increases the maximum cylinder pressure and maximum heat release rate, increases the maximum cylinder temperature and IMEP, but the exhaust temperature decreases. The flame development period and flame propagation period shorten after adding hydrogen. Hydrogen addition improves HC and CO emissions but increases NOx emissions. Particle emissions decrease distinctly after hydrogen addition. Hydrogen changes the combustion properties of ABE and improves the test engine's power and emissions. The combustion in the cylinder becomes better with the increase of αH2, but a further increase in αH2 beyond 5% brings minor improvements on combustion.  相似文献   

18.
Lean combustion has the potential to achieve higher thermal efficiency for internal combustion (IC) engines. However, natural gas engines often suffer from slow burning rate and large cyclic variations when adopting lean combustion. In this study, using a dual-fuel optical engine with a high compression ratio, the effects of direct-injected hydrogen on lean combustion characteristics of natural gas engines was investigated, emphasizing the role of hydrogen injection timing. Synchronization measurement of in-cylinder pressure and high-speed photography was performed for combustion analysis. The results show that the direct-injected hydrogen exhibits great improvement in lean combustion instability and power capability of natural gas engines. Visual images and combustion phasing analysis indicate that the underlying reasons are ascribed to the fast flame propagation with hydrogen addition. Regarding the direct injection timings, it is found that late injection of direct-injected hydrogen can achieve higher thermal efficiency, manifesting advanced combustion phasing, and increased heat release rate. Specifically, the flame propagation speed is elevated by approximately 50% at ?100 CAD than that of ?250 CAD. Further analysis indicates that the improvement of engine performance is ascribed to the increased volumetric efficiency and in-cylinder turbulence intensity, manifesting distinct flame centroid pathways at different injection timings. The current study provides insights into the combustion optimization of natural gas engines under lean burning conditions.  相似文献   

19.
Ethanol, as one of the carbon-neutral fuels for spark ignition (SI) engine, has been widely used. Dehydration and purification of ethanol during production process will lead to high energy consumption. If hydrous ethanol can be directly applied to the engine, the cost of use will be greatly reduced. Due to the high latent heat of vaporization of ethanol and water, it is necessary to consider the performance of atomization, evaporation and combustion stability when hydrous ethanol is used in engine. As a zero-carbon fuel, hydrogen has excellent characteristics such as low ignition energy, fast flame propagation speed and wide combustion limit. The combination of hydrous ethanol and hydrogen can reduce the use cost and ensure better combustion performance. Therefore, this study explores the performance of hydrous ethanol/hydrogen in SI combined injection engine. The hydrous ethanol is injected into the intake port and the hydrogen is directly injected into the cylinder during the compression stroke. In this study, we firstly analyze the optimal water blending ratio (ω) of hydrous ethanol, which including 0, 3%, 6%, 9% and 12%. The experimental results show that the hydrous ethanol with 9% water ratio has the best performance without hydrogen addition. Based on the 9% water ratio, the effects of hydrogen blending ratio (0, 5%, 10%, 15% and 20%) on the combustion and emission under different excess air ratio (λ) (1, 1.1, 1.2, 1.3, 1.4). Hydrogen addition can increase the degree of constant volume combustion, so that the maximum cylinder pressure and temperature increase with the increase of the hydrogen blending ratio (HBR). When λ = 1.3 and HBR = 20%, the maximum in-cylinder pressure can be increased by 108.64% compared to pure hydrous ethanol. Hydrogen effectively increases the indicated mean effective pressure (IMEP) and reduces the coefficient of variation of IMEP (COVIMEP). Adding hydrogen can reduce CO and HC emissions, while NOx emissions will increase. When λ = 1.2 and HBR increasing from 0 to 20%, the NOx emissions increase by 106.75%, but it is still less than the NOx emissions of pure hydrous ethanol at λ = 1. On the whole, hydrogen direct injection can improve the combustion performance of hydrous ethanol and achieve stable combustion under lean-burn conditions.  相似文献   

20.
Limitations on the upgradation of biogas to biomethane in terms of cost effectiveness and technology maturity levels for stationary power generation purpose in rural applications have redirected the research focus towards possibilities for enhancement of biogas fuel quality by blending with superior quality fuels. In this work, the effect of hydrogen enrichment on performance, combustion and emission characteristics of a single-cylinder, four-stroke, water-cooled, biogas fuelled spark-ignition engine operated at the compression ratio of 10:1 and 1500 rpm has been evaluated using experimental and computational (CFD) studies. The percentage share of hydrogen in the inducted biogas fuel mixture was increased from 0 to 30%, and engine characteristics with pure methane fuel was considered as a baseline for comparative analysis. The CFD model is developed in Converge CFD software for a better understanding on combustion phenomenon and is validated with experimental data. In addition, the percentage share of hydrogen enrichment which would serve as a compromise between biogas upgradation cost and engine characteristics is also identified. The results of study indicated an enhancement in combustion characteristics (peak in-cylinder pressure increased; COVIMEP reduced from 9.87% to 1.66%; flame initiation and combustion durations reduced) and emission characteristics (hydrocarbon emissions reduced, and NOx emissions increased but still lower than pure methane) with increase in hydrogen share from 0 to 30% in biogas fuelled SI engine. Flame propagation speed increased and combustion duration reduced with hydrogen supplementation and the same was evident from the results of the CFD model. Performance of the engine increased with increase in hydrogen share up to 20% and further increment in hydrogen share degraded the performance, owing to heat losses and the enhancement in combustion characteristics were relatively small. Overall, it was found that 20% blending of hydrogen in the inducted biogas fuel mixture will be effective in enhancing the engine characteristics of biogas fuelled engines for stationary power generation applications and it holds a good compromise between biogas upgradation cost and engine performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号