首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three different preparation methods have been used to synthesize CuO–CeO2 catalysts with 7 wt.% copper loading: coprecipitation (CP), sol–gel (SG) and urea–nitrate combustion (UC). All the samples have been characterized by a series of techniques such as XRD, Raman, TPR, TPD and OSC, in order to understand their different performance in CO oxidation, as a function of redox properties and catalyst structure. Among the catalysts, clearly CuCe-CP shows the lower activity because it presents the structure of a solid solution. CuCe-SG and CuCe-UC catalysts show much better performance in CO oxidation, in accordance to their higher redox capacity.  相似文献   

2.
3.
Two different preparation methods are used to synthesize wt. 7% CuO–CeO2 catalysts: a conventional wet impregnation method, and a deposition–precipitation (DP) method using Na2CO3 as precipitating agent. Both samples are characterized by a series of techniques. CuO–CeO2 (Cu–Ce) prepared by DP shows a lower capacity to release the lattice oxygen to form CO2. From CO-TPR results, it is demonstrated that this catalyst is not able to reduce copper clusters at low temperatures. Also, CO-TPD shows no CO2 formation. The activity results confirm the worse performance of Cu–Ce prepared by DP especially when oxygen is not in excess (PROX reaction with stoichometric oxygen). A copper particle size which is too small could create a stronger metal-support interaction, with lower Cu–Ce interface to react.  相似文献   

4.
The effect of several catalyst supports with large specific surface area (such as SiC, Al2O3, SiC–Al2O3–ball, and SiC–Al2O3) on catalytic activity was evaluated in this study. CuO–CeO2 supported on SiC–Al2O3 exhibited high stability and activity, which was considerably close to the thermodynamic equilibrium curve at 625 °C during the stability test for 50 h. The SO3 decomposition temperature decreased from 750 °C to 625 °C. SiC–Al2O3contained numerous micropores and mesopores and had a large specific area, indicating strong adsorption, as determined by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and nitrogen adsorption measurement. X-ray photoelectron spectroscopy (XPS) revealed that the surface of SiC–Al2O3consisted of Al2O3, SiC, and SiO2 and that the cerium oxide surface had the largest number of defects. Temperature-programmed reduction (H2-TPR) results indicated that the cerium–copper oxides on the surface of powdered SiC–Al2O3 had the strongest redox potential and that CuO had the lowest reduction temperature.  相似文献   

5.
Monometallic copper and nickel catalysts supported on cerium-manganese mixed oxides are prepared, characterized and evaluated for the Water–Gas Shift (WGS) reaction. Active metal loading of 2.5 wt% and 7.5 wt% are used to impregnate MnOx–CeO2 supports with 30% and 50% Mn:Ce molar ratio. The structure of the samples strongly depends on both the active metal employed and the manganese content in the mixed support. For both Cu and Ni samples, the best catalytic behavior is found in samples supported on the MnOx–CeO2 oxides with 30% Mn:Ce molar ratio, as a result of the presence of CuxMnyO4 spinel-type phases in the case of copper catalysts and the presence of a NiMnO3 mixed oxide with defect ilmenite structure in the case of nickel catalysts.  相似文献   

6.
The precipitation processes of CuO–CeO2 catalysts preparation were modified, and their optimized copper content were also studied in detail. As indicated by the experimental results, the WGS catalytic activities of the CuO–CeO2 catalysts can be ranked as: stepwise precipitation (SP) > deposition–precipitation (DP) > co-precipitation (CP), suggesting that stepwise precipitation (i.e., a modified DP) is a convenient and effective method to prepare CuO–CeO2 WGS catalysts. The optimized copper contents of CuO–CeO2–SP and CuO–CeO2–CP catalysts are 20 wt.% and 25 wt.%, respectively. Their catalytic activities can be strongly correlated with the results from XRD, XPS, Raman, N2-physisorption, N2O chemisorption and H2-TPR. For DP and SP, a certain amount of copper has substitutively incorporated into ceria lattice with multiple Ce3+ and oxygen vacancies, which is considered as one relatively strong interaction between copper and ceria support. The substitutional incorporation of copper creates larger lattice distortion, lattice defect (embodying as larger lattice cell contraction of CeO2, microstrain and Raman shift) and stronger reducibility (i.e., lower reduction temperature of H2-TPR), as a consequence, higher surface energy and catalytic activity for WGS reaction. While for CP, copper nitrate and cerium nitrate were simultaneously precipitated, resulting in the burial of many copper species in ceria supports, i.e., occupancy incorporation of isolated copper into ceria lattice vacant site, which is considered as another weak interaction between copper and ceria support. Accordingly, combined with N2O chemisorption results, it is demonstrated that surface copper species of CuO–CeO2–CP are fewer and less active than those of CuO–CeO2–DP and CuO–CeO2–SP. Lastly, there is a direct relationship between the pore volume along with most probable pore size of the as-synthesized catalysts and their corresponding catalytic activities for WGS reaction.  相似文献   

7.
8.
Oxidative steam reforming of ethanol at low oxygen to ethanol ratios was investigated over nickel catalysts on Al2O3 supports that were either unpromoted or promoted with CeO2, ZrO2 and CeO2–ZrO2. The promoted catalysts showed greater activity and a higher hydrogen yield than the unpromoted catalyst. The characterization of the Ni-based catalysts promoted with CeO2 and/or ZrO2 showed that the variations induced in the Al2O3 by the addition of CeO2 and/or ZrO2 alter the catalyst's properties by enhancing Ni dispersion and reducing Ni particle size. The promoters, especially CeO2–ZrO2, improved catalytic activity by increasing the H2 yield and the CO2/CO and the H2/CO values while decreasing coke formation. This results from the addition of ZrO2 into CeO2. This promoter highlights the advantages of oxygen storage capacity and of mobile oxygen vacancies that increase the number of surface oxygen species. The addition of oxygen facilitates the reaction by regenerating the surface oxygenation of the promoters and by oxidizing surface carbon species and carbon-containing products.  相似文献   

9.
In order to investigate the effect of transition metal addition to platinum with different support materials on preferential CO oxidation, structure and chemical properties of supported bimetallic catalysts prepared by electron beam irradiation method were correlated to the catalytic performance. On Al2O3, decoration of Pt by small amount of Co (Co/Pt ∼ 0.03) drastically increased CO and O2 conversions while addition of equimolar Cu to Pt increased them only above 100 °C, where the rate-controlling factor was suggested to change from oxygen transport to CO activation. On CeO2, either addition of Co or Cu to Pt had minor or negative effect on high O2 conversion inherent to high oxygen transport at Pt–CeO2 interface. On Pt–Cu/CeO2, however, metal-CuOx interface dominates the reaction characteristics to give improved selectivity, which is suitable for deep CO removal in excess O2/CO condition. The order of selectivity above 100 °C, Pt–CoOx > Pt(alloy)–CuOx > Pt–CeO2 interfaces, was derived from structural analysis and catalytic tests.  相似文献   

10.
Meso–macroporous alumina supported CuO–CeO2 catalysts were prepared by citrate, urea combustion and impregnation methods. The effect of loading methods on the microstructure of the catalysts, the interaction between copper and ceria and the catalytic performance for preferential oxidation of CO in hydrogen-rich gases was investigated. The prepared monolithic catalysts were characterized by using techniques of N2 adsorption and desorption, SEM, XRD, HRTEM and TPR. The results showed that the loading methods markedly influenced the catalyst structure and the catalytic performance. The citrate and urea combustion methods favored the formation of the interaction between copper and ceria. Compared with the urea combustion method, the citrate method led to smaller ceria particles on the alumina support. The meso–macroporous monolithic catalysts prepared by the citrate method maintained the structural characteristics of the highly active CuO–CeO2 catalysts, and showed good catalytic performance in CO preferential oxidation in the simulated reformate gases containing water and CO2.  相似文献   

11.
The Cu-based catalysts with different supports (CeO2, ZrO2 and CeO2–ZrO2) for methanol steam reforming (MSR) were prepared by a co-precipitation procedure, and the effect of different supports was investigated. The catalysts were characterized by means of N2 adsorption–desorption, X-ray diffraction, temperature-programmed reduction, oxygen storage capacity and N2O titration. The results showed that the Cu dispersion, reducibility of catalysts and oxygen storage capacity evidently influenced the catalytic activity and CO selectivity. The introduction of ZrO2 into the catalyst improved the Cu dispersion and catalyst reducibility, while the addition of CeO2 mainly increased oxygen storage capacity. It was noticed that the CeO2–ZrO2-containing catalyst showed the best performance with lower CO concentration, which was due to the high Cu dispersion and well oxygen storage capacity. Further investigation illuminated that the formation of CO on CuO/ZnO/CeO2–ZrO2 catalyst mainly due to the reverse water gas shift. In addition, the CuO/ZnO/CeO2–ZrO2 catalyst also had excellent reforming performance with no deactivation during 360 h run time and was used successfully in a mini reformer. The maximum hydrogen production rate in the mini reformer reached to 162.8 dm3/h, which can produce 160–270 W electric energy power by different kinds of fuel cells.  相似文献   

12.
A series of CexZr1xO2-based Cu catalysts was synthesized by the co-precipitation method. The influences of copper content, zirconium addition, and ratio of ceria to zirconia on the catalytic activity were investigated. BET, N2O decomposition, XRD, TEM, SEM, EDS, Raman spectroscopy, H2-TPR, TG/DTA, and XPS were used to characterize the catalysts. The catalytic activity was tested in terms of CO conversion and H2 selectivity in H2-rich coal-derived synthesis gas, simulating the actual gas composition of an integrated gasification combined cycle (IGCC) system. The long-term catalyst stability was also examined at 450 °C for 196 h. The addition of zirconium was found to be very important in enhancing catalytic performance. The surface area, copper dispersion, oxygen storage and mobility capacity, reducibility, as well as resistance to sintering all improved after zirconium addition.  相似文献   

13.
14.
The Ni/CeO2 catalysts with different calcination temperatures have been tested for hydrogen production in sulfur–iodine (SI or IS) cycle. TG-FTIR, BET, XRD, HRTEM and TPR were performed for catalyst characterization. It was found that the Ni2+ ions could be inserted into the ceria lattice. This brought about the strong interaction between Ni and CeO2 and the generation of oxygen vacancies. Perfect crystallites were formed in the catalysts. It was evident that there was a change in particle size and morphology as the calcination temperature increased from 300 to 900 °C. The Ni/CeO2 catalysts with different calcination temperatures showed better catalytic activity by comparison with blank yield, especially Ni/Ce700. A hypothetic mechanism of HI catalytic decomposition on Ni/CeO2 has been constructed. The two important reactive sites were assumed for HI catalytic decomposition.  相似文献   

15.
Pristine Ni/γ–Al2O3 and CeO2–Ni/γ–Al2O3 catalysts were prepared by co-impregnation technique for dry reforming of propane. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) were used to examine the structure and morphology of the catalysts before and after the reforming reactions. The excellent interaction between catalyst active phases was observed in both CeO2–Ni/γ–Al2O3 and Ni/γ–Al2O3 stabilized with polyethelene glycol (Ni/γ–Al2O3–PEG). Towards C3H8 and CO2 conversion, the CeO2–Ni/γ–Al2O3 and Ni/γ–Al2O3–PEG showed improved catalytic activity when compared to the pristine Ni/γ–Al2O3 catalyst. Interestingly, high H2 concentration was achieved with the CeO2–Ni/γ–Al2O3 and high CO concentration with the Ni/γ–Al2O3–PEG, which is due to the nanoconfinement of nickel particles within the support and favorable metal-support interaction as a result of plasma reduction. The CeO2–Ni/γ–Al2O3 catalyst exhibited better stability for anti-sintering and coke resistance, thus exhibiting high reactivity and durability in the dry reforming.  相似文献   

16.
A series of composite catalysts Ni/CeO2–ZrO2 were prepared via impregnation method with Ni as the active metal. A laboratory-scale fixed-bed reactor was employed to investigate the catalyst performance during hydrogen production by steam reforming bio-oil aqueous fraction. Effects of water-to-bio-oil ratio (W/B), reaction temperature, and the loaded weight of Ni and Ce on the hydrogen production performance of Ni/CeO2–ZrO2 catalysts were examined. The obtained results were compared with commercial nickel-based catalysts (Z417). The best performance of Ni/CeO2–ZrO2 catalyst was observed when the Ni and Ce loaded weight were 12% and 7.5% respectively. At W/B = 4.9, T = 800 °C, H2 yield reaches the highest of 69.7% and H2 content of 61.8% were obtained. Under the same condition, H2 yield and H2 content were higher than commercial nickel-based catalysts (Z417).  相似文献   

17.
Production of syngas via autothermal reforming of methane (MATR) in a fluidized bed reactor was investigated over a series of combined CeO2–ZrO2/SiO2 supported Ni catalysts. These combined CeO2–ZrO2/SiO2 supports and supported Ni catalysts were characterized by nitrogen adsorption, XRD, NH3-TPD, CO2-TPD and H2-TPR. It was found that the combined supports integrated the advantages of SiO2 and CeO2, ZrO2. That is, they have bigger surface area (about 300 m2/g) than pure CeO2 and ZrO2, stronger acidity and alkalescence than that of pure SiO2, and enhanced the mobility of H adatoms. Ni species dispersed highly on these combined CeO2–ZrO2/SiO2 supports, and became more reducible. Ni catalysts on the combined supports possess higher CO2 adsorption ability, higher methane activation ability and exhibited higher activity for MATR. H2/CO ratio in product gas could be controlled successfully in the range of 0.99–2.21 by manipulating the relative concentrations of CO2 and O2 in feed.  相似文献   

18.
Τhe feasibility of tailoring the iso-octane steam reforming activity of Cu/CeO2 catalysts through the use of Co as a second active metal (Cu20−xCox, where x = 0, 5, 10, 15, 20 wt%), is investigated. Characterization studies, involving N2 adsorption–desorption at −196 °C (BET), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS) and Temperature Programmed Reduction (H2-TPR), were carried out to reveal the impact of the morphological, structural and surface properties of the catalysts on the reforming performance. The results showed that reforming activity was monotonically increased upon increasing cobalt loading. The Co/CeO2 catalyst demonstrated the optimum performance with a H2 yield of 70–80% in the 600–800 °C temperature interval. The Co/CeO2 catalyst exhibited also excellent stability at temperatures above 700 °C, while Cu-based catalysts rapidly deactivated in long term stability tests. A close correlation between surface/redox properties and steam reforming efficiency was established. The lower reducibility of Co/CeO2 catalysts, associated with the formation of Co3+ species, in Co3O4-like phase, can be accounted for the enhanced carbon tolerance of Co-based catalysts. Furthermore, the high concentration of surface oxygen species on Co/CeO2 catalysts can be considered for their enhanced performance. On the other hand, the Cu-induced easier reducibility of bimetallic catalysts, in conjunction with carbon deposition and active phase sintering can be accounted for their inferior steam reforming performance. Irreversible changes in the redox properties of Cu-based catalysts, taking place under reaction conditions, could be resulted to ceria deactivation thus hindering the redox process to keep on.  相似文献   

19.
In the preferential oxidation of CO in hydrogen mixtures (PROX), CO and H2 oxidation occur in parallel on the surface in a porous catalyst. The diffusion of the reactants into the pore structure of the catalyst can affect the catalyst performance significantly, and its effect can be accounted for in terms of the effectiveness factor. Conventional methods for estimating the effectiveness factor are not directly applicable because they have been developed for a single reaction in a catalyst particle. A novel method for a simultaneous estimation of the effectiveness factors of the two reactions was developed in this study. This method is based on the PROX kinetics over a CuO–CeO2 catalyst and is applicable to the cases where the CO oxidation can be approximated by a first-order reaction and both oxidations are zero-order reactions with respect to the O2 partial pressure. With the method, the performance of an isothermal PROX reactor was simulated to determine the effects of the feed flow rate, feed composition, reactor temperature and catalyst size on the CO clean-up.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号