首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We fabricate NIR-active solar cells based on PbS quantum dots and a conventional conjugated polymer. These devices act as solar cells under exclusively NIR wavelengths above 650 nm. Here PbS nanoparticles absorb photons in the NIR range that in turn generate excitons. We show that with an assistance from a strong electron-acceptor (TiO2), these excitons can be dissociated to electrons and holes to yield a photocurrent in the external circuit. We then aim to extend the spectral window of the solar cells to higher wavelength region by increasing the diameter of PbS nanoparticles to make the cells further NIR-active. We observe that the short-circuit current (JSC) shows a peak when the diameter of PbS nanoparticles increases. Here, the spectral window can be extended till conduction band-edge of PbS quantum dots falls below that of TiO2 nanostructures cutting off the electron-transfer pathway. The NIR-active photovoltaic solar cells yield a short-circuit current (JSC) of 1.0 mA/cm2, open-circuit voltage (VOC) of 0.42 V, and power conversion efficiency (η) of 0.16% and remain operative till 1200 nm.  相似文献   

2.
Efficient hybrid solar cells fabricated from TiO2, novel carboxylated polythiophene poly (3-thiophenemalonic acid) P3TMA as sensitizer as well as hole conductor and poly (3-hexylthiophene) (P3HT) as hole transporter was described. UV-Vis absorption and morphology of the active layer were investigated. Device J/V characterizations with different P3HT layer thickness were measured and discussed. Efficiency improvements were observed in thinner P3HT layer thickness and with poly[3,4-(ethylenedioxy)-thiophene]:poly(styrene sulfonate) (PEDOT:PSS) as charge collection layer, and such device showed a short-circuit current density of 1.32 mA/cm2, an open-circuit voltage of 0.44 V, a fill factor of 0.43, and a energy conversion efficiency of 0.25% at A.M. 1.5 solar illumination (100 mW/cm2).  相似文献   

3.
In this study, the fabrication of photoanode of dye-sensitized solar cell (DSSC) using two-dimensional ZnO nanosheets (ZnONSs) and low-cost metal-free photosensitizer, evans blue, and evaluation of its photovoltaic performance in the solid-state DSSC with TiO2 nanotubes (TNTs) modified poly(ethylene oxide) (PEO) polymer electrolyte is described. The ZnONSs are synthesized via hydrothermal method and are characterized by high resolution scanning electron microscopy (HR-SEM), diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PLS) and X-ray diffraction (XRD) analysis. The photovoltaic performance of the cells is evaluated under standard air mass 1.5 global simulated illumination (100 mW cm−2). The current-voltage (I-V) and photocurrent-time (I-T) curves proved effective collection of electrons in the solid-state DSSCs with the ZnONSs photoanode. The solar to electrical energy conversion efficiency of the ZnONSs based DSSC with TNTs modified PEO electrolyte is 0.12%, which is about 1.5 times higher than that of the ZnO nanoparticles based DSSC, due to fast electron diffusion within the nanosheets.  相似文献   

4.
The carbon-supported Pt-modified Au nanoparticles were prepared by two different chemical reduction processes, the simultaneous chemical reduction of Pt and Au on carbon process (A-AuPt/C) and the successive reduction of Au then Pt (B-AuPt/C) on carbon process. These two catalysts were investigated as the anode catalysts for a direct borohydride fuel cell (DBFC) and Au nanoparticles on carbon (Au/C) were also prepared for comparison. The DBFC with B-AuPt/C as the anode catalyst shows the best anode and fuel cell performance. The maximum power density with the B-AuPt/C catalyst is 112 mW cm−2 at 40 °C, compared to 97 mW cm−2 for A-AuPt/C and 65 mW cm−2 for Au/C. In addition, the DBFC with the B-AuPt/C catalyst shows the best fuel utilization with a maximum apparent number of electrons (Napp) equal to 6.4 in 1 M NaBH4 and 7.2 in 0.5 M NaBH4 as compared to the value of Napp of 8 for complete utilization of borohydride.  相似文献   

5.
A film of copper complex [CuL](NO3)2 (L = 2,3,8,9-tetraphenyl-1,4,7,10-tetraazacyclododeca-1,3,7,9-tetraene) formed on indium-tin oxide (ITO) coated glass by the solvent evaporation of the acetonitrile solution of the complex onto the ITO substrate, was characterized by ultraviolet-visible absorption spectroscopy, cyclic voltammetry, scanning electron microscopy, and photoelectrochemistry. The photoelectrochemical cell by using [CuL](NO3)2 modified ITO, a saturated calomel electrode, and platinum wire as working, reference and counter electrodes respectively in 1 M Na2SO4, was found to exhibit a large prompt and reproducible cathodic photocurrent density of 71 μA/cm2 under white light irradiation of 70 mW/cm2 at an applied potential of −0.4 V, and an incident photon to current efficiency (IPCE) of 1.1% at λ = 660 nm. This Cu(II) complex photosensitizer has advantages of simple synthesis, low-cost, environmentally benign and good photoelectrochemical performance.  相似文献   

6.
The paper presents a new leaching-solvent extraction hydrometallurgical process for the recovery of a pure and marketable form of cobalt sulfate solution from waste cathodic active material generated during manufacturing of lithium ion batteries (LIBs). Leaching of the waste was carried out as a function of the leachant H2SO4 concentration, temperature, pulp density and reductant H2O2 concentration. The 93% of cobalt and 94% of lithium were leached at suitable optimum conditions of pulp density: 100 g L−1, 2 M H2SO4, 5 vol.% of H2O2, with a leaching time 30 min and a temperature 75 °C. In subsequent the solvent extraction study, 85.42% of the cobalt was recovered using 1.5 M Cyanex 272 as an extractant at an O/A ratio of 1.6 from the leach liquor at pH 5.00. The rest of the cobalt was totally recovered from the raffinate using 0.5 M of Cyanex 272 and an O/A ratio of 1, and a feed pH of 5.35. Then the co-extracted lithium was scrubbed from the cobalt-loaded organic using 0.1 M Na2CO3. Finally, the cobalt sulfate solution with a purity 99.99% was obtained from the cobalt-loaded organic by stripping with H2SO4.  相似文献   

7.
The 1 axis-3 position (1A-3P) sun tracking PV was built and tested to measure the daily and long-term power generation of the solar PV system. A comparative test using a fixed PV and a 1A-3P tracking PV was carried out with two identical stand-alone solar-powered LED lighting systems. The field test in the particular days shows that the 1A-3P tracking PV can generate 35.8% more electricity than the fixed PV in a partly-cloudy weather with daily-total solar irradiation HT = 11.7 MJ/m2 day, or 35.6% in clear weather with HT = 18.5 MJ/m2 day. This indicates that the present 1A-3P tracking PV can perform very close to a dual-axis continuous tracking PV (Kacira et al., 2004). The long-term outdoor test results have shown that the increase of daily power generation of 1A-3P tracking PV increases with increasing daily-total solar irradiation. The increase of monthly-total power generation for 1A-3P sun tracking PV is between 18.5-28.0%. The total power generation increase in the test period from March 1, 2010 to March 31, 2011, is 23.6% in Taipei (an area of low solar energy resource). The long-term performance of the present 1X-3P tracking PV is shown very close to the 1-axis continuous tracking PV in Taiwan (Chang, 2009). If the 1A-3P tracking PV is used in the area of high solar energy resource with yearly-average HT > 17 MJ/m2 day, the increase of total long-term power generation with respect to fixed PV will be higher than 37.5%. This is very close to that of dual-axis continuous tracking PV.The 1A-3P tracker can be easily mounted on the wall of a building. The cost of the whole tracker is about the same as the regular mounting cost of a conventional rooftop PV system. This means that there is no extra cost for 1A-3P PV mounted on buildings. The 1A-3P PV is quite suitable for building-integrated applications.  相似文献   

8.
In this study, p(AMPS) hydrogels are synthesized from 2-acrylamido-2-methyl-1-propansulfonic acid (AMPS) via a photo polymerization technique. The hydrogels are used as template for metal nanoparticles and magnetic ferrite nanoparticles, and also as a catalysis vessel in the generation of hydrogen from the hydrolysis of NaBH4. Approximately 5 nm Ru (0) and 20-30 nm magnetic ferrite particles are generated in situ inside this p(AMPS) hydrogel network and then used as a catalysis medium in hydrogen production by hydrolysis of sodium boron hydride in a basic medium. With an applied external magnetic field, the hydrogel reactor, containing Ru and ferrite magnetic particles, can be removed from the catalysis medium; providing on-demand generation of hydrogen. The effect of various parameters such as the initial concentration of NaBH4, the amount of catalyst and temperature on the hydrolysis reaction is evaluated. The activation energy for hydrogen production by Ru (0) nanoparticles is found to be 27.5 kJ mol−1; while the activation enthalpy is 30.4 kJ mol−1. The hydrogen generation rate in presence of 5 wt% NaOH and 50 mg p(AMPS)-Ru catalyst is 8.2 L H2 min−1 g Ru.  相似文献   

9.
For HIT (heterojunction with intrinsic thin-layer) solar cell with Al back surface field on p-type Si substrate, the impacts of substrate resistivity on the solar cell performance were investigated by utilizing AFORS-HET software as a numerical computer simulation tool. The results show that the optimized substrate resistivity (Rop) to obtain the maximal solar cell efficiency is relative to the bulk defect density, such as oxygen defect density (Dod), in the substrate and the interface defect density (Dit) on the interface of amorphous/crystalline Si heterojunction. The larger Dod or Dit is, the higher Rop is. The effect of Dit is more obvious. Rop is about 0.5 Ω cm for Dit = 1.0 × 1011/cm2, but is higher than 1.0 Ω cm for Dit = 1.0 × 1012/cm2. In order to obtain very excellent solar cell performance, Si substrate, with the resistivity of 0.5 Ω cm, Dod lower than 1.0 × 1010/cm3, and Dit lower than 1.0 × 1011/cm2, is preferred, which is different to the traditional opinion that 1.0 Ω cm resistivity is the best.  相似文献   

10.
Amorphous boron nanoparticles were synthesized by heating a B2O3 + 3 Mg + kNaCl (k is the number of moles of NaCl) exothermic mixture in a laboratory oven at 800 °C under argon flow. NaCl was used as inert material to decrease the maximum combustion temperature of the reaction mixture when it was self-ignited after the melting of Mg at 650 °C. The size of the boron nanoparticles extracted from the final product by acid leaching ranged between 30 and 300 nm for k values ranging from 1 to 5. Moreover, increasing the value of k from 1 to 5 resulted in an increase in the specific surface area of the nanoparticles from 40 to 74 m2 g−1. However, at k = 10, a decrease in the specific surface area to 47.56 m2 g−1 was recorded due to incomplete reduction of B2O3. The ignition point of boron nanoparticles in air as estimated using a thermocouple was approximately 300 °C. Digital camera recording of the combustion process of boron nanoparticles in air revealed that the burning speed of the nanoparticles increased significantly from 0.3 to 15 cm/s when k increased from 1 to 5.  相似文献   

11.
The effects of external factors on both H2 production and bidirectional Hox-hydrogenase activity were examined in the non-N2-fixing cyanobacterium Synechocystis PCC 6803. Exogenous glucose and increased osmolality both enhanced H2 production with optimal production observed at 0.4% and 20 mosmol kg−1, respectively. Anaerobic condition for 24 h induced significant higher H2ase activity with cells in BG110 showing highest activities. Increasing the pH resulted in an increased Hox-hydrogenase activity with an optimum at pH 7.5. The Hox-hydrogenase activity gradually increased with increasing temperature from 30 C to 60 C with the highest activity observed at 70 C. A low concentration at 100 μM of either DTT or β-mercaptoethanol resulted in a minor stimulation of H2 production. β-Mercaptoethanol added to nitrogen- and sulfur-deprived cells stimulated H2 production significantly. The highest Hox-hydrogenase activity was observed in cells in BG110-S-deprived condition and 750 μM β-mercaptoethanol measured at a temperature of 70 °C; 14.32 μmol H2 mg chl a−1 min−1.  相似文献   

12.
A new air-stable triarylamine-based amorphous polymer, TSP-T11, which consists of thiophene and triarylamine units, can be successfully utilized to fabricate bulk-heterojunction organic photovoltaics (OPVs) using PC60BM or PC70BM as acceptor materials. The highest level of performance of OPVs optimized at TSP-T11:PC70BM (weight ratios of 1:4) with thicknesses of 68 nm exhibited an open circuit voltage (Voc) of 0.75 V, a short circuit current (Jsc) of 8.03 mA cm−2, and a power-conversion efficiency (PCE) of 2.22% under simulated air mass 1.5 solar irradiation at 100 mW cm−2. Although TSP-T11 has a lower hole mobility (1.5×10−4 cm2 V−1 s−1) than P3HT, the use of amorphous film of TSP-T11 as a donor material for OPVs offers advantages over the use of polycrystalline film of P3HT in terms of its air-stability and pinhole-free homogeneous morphology.  相似文献   

13.
Dye-sensitized solar cells are promising candidates as supplementary power sources; the dominance in the photovoltaic field of inorganic solid-state junction devices is in fact now being challenged by the third generation of solar cells based on dye-sensitized, nano-porous photo-electrodes and polymer electrolytes. Polymer electrolytes are actually very favorable for photo-electrochemical solar cells and in this study poly(acrylonitrile)-MgI2 based complexes are used. As ambient temperature conductivity of poly(acrylonitrile)-salt complexes are in general low, a conductivity enhancement is attained by blending with the plasticizers ethylene carbonate and propylene carbonate. At 20 °C the optimum ionic conductivity of 1.9 × 10−3 S cm−1 is obtained for the (PAN)10(MgI2)n(I2)n/10(EC)20(PC)20 electrolyte where n = 1.5. The predominantly ionic nature of the electrolyte is seen from the DC polarization data. Differential scanning calorimetric thermograms of electrolyte samples with different MgI2 concentrations were studied and glass transition temperatures were determined. Further, in this study, a dye-sensitized solar cell structure was fabricated with the configuration Glass/FTO/TiO2/Dye/Electrolyte/Pt/FTO/Glass and an overall energy conversion efficiency of 2.5% was achieved under solar irradiation of 600 W m−2. The I-V characteristics curves revealed that the short-circuit current, open-circuit voltage and fill factor of the cell are 3.87 mA, 659 mV and 59.0%, respectively.  相似文献   

14.
Nanoporous hematite (α-Fe2O3) thin films doped with Ti4+ deposited by spray-pyrolysis were successfully used in photoelectrochemical splitting of water for solar hydrogen production. X-ray diffraction, field emission scanning electron microscopy, UV–visible absorption and photoelectrochemical studies have been performed on the undoped and Ti4+ doped hematite thin films. Morphology of α-Fe2O3 thin films was observed to be nanoporous, with increased porosity (pore size ∼12 to 20 nm) on increasing doping concentration. A significant decrease in the bandgap energy from 1.95 to 1.27 eV was found due to doping. α-Fe2O3 film doped with 0.02 M Ti4+ ions exhibited best solar to hydrogen conversion efficiency (photoconversion efficiency) of 1.38% at 0.5 V/SCE. Highest photocurrent densities of 0.34 mA/cm2 at zero bias and 1.98 mA/cm2 at 0.5 V/SCE were obtained by incorporating 0.02 M Ti4+ in α-Fe2O3, which are significantly larger than earlier reported values. Donor density (30.8 × 1020 cm−3) and flatband potential (−1.01 V/SCE) obtained were also maximum for this sample. Hydrogen collected in 1 hr at Pt electrode with the best photoelectrode was 2.44 mL with 150 mW/cm2 visible light source.  相似文献   

15.
We report the effect of CdCl2 vapor treatment on the photovoltaic parameters of CdS/CdTe solar cells. Vapor treatment allows combining CdCl2 exposure time and annealing in one step. In this alternative treatment, the CdS/CdTe substrates were treated with CdCl2 vapor in a close spaced sublimation (CSS) configuration. The substrate temperature and CdCl2 powder source temperature were 400 °C. The treatment was done by varying the treatment time (t) from 15 to 90 min. Such solar cells are examined by measuring their current density versus voltage (J-V) characteristics. The open-circuit voltage (Voc), short circuit current density (Jsc) and fill factor (FF) of our best cell, fabricated and normalized to the area of 1 cm2, were Voc = 663 mV, Jsc = 18.5 mA/cm2 and FF = 40%, respectively, corresponding to a total area conversion efficiency of η = 5%. In cells of minor area (0.1 cm2) efficiencies of 8% have been obtained.  相似文献   

16.
For the first time solar disinfection of liters of water containing wild Salmonella sp. and total coliforms was carried out in a compound parabolic collector (CPC) photoreactor at temperatures of almost 50 °C. Using surface water with high turbidity, this treatment was efficient in completely inactivating Salmonella sp. without regrowth during the subsequent 72 h of dark sterile storage. However if the solar treated water is poured in a non- sterile container, bacteria regrowth occurs even if 10 mg L−1 of H2O2 is added before the storage. On the other hand, 30 mg L−1 of H2O2 added when the irradiation started was completely depleted within 2 h and did not prevent bacterial regrowth during post-irradiation storage in non-sterile containers, demonstrating that storage of large volumes of water treated by solar irradiation was not optimal. Finally, total coliforms (Escherichia coli included) showed a far higher sensitivity than Salmonella sp. and demonstrated to be an inappropriate indicator for monitoring bacterial contamination in water during solar disinfection processes.  相似文献   

17.
The effect of different food to microorganism ratios (F/M) (1–10) on the hydrogen production from the anaerobic batch fermentation of mixed food waste was studied at two temperatures, 35 ± 2 °C and 50 ± 2 °C. Anaerobic sludge taken from anaerobic reactors was used as inoculum. It was found that hydrogen was produced mainly during the first 44 h of fermentation. The F/M between 7 and 10 was found to be appropriate for hydrogen production via thermophilic fermentation with the highest yield of 57 ml-H2/g VS at an F/M of 7. Under mesophilic conditions, hydrogen was produced at a lower level and in a narrower range of F/Ms, with the highest yield of 39 ml-H2/g VS at the F/M of 6. A modified Gompertz equation adequately (R2 > 0.946) described the cumulative hydrogen production yields. This study provides a novel strategy for controlling the conditions for production of hydrogen from food waste via anaerobic fermentation.  相似文献   

18.
To our knowledge, the present study is the first investigation by liquid-phase calorimetry of the mechanism of hydrogen generation by hydrolysis of sodium borohydride catalyzed by Co2B nanoparticles generated in situ. The differential reaction calorimeter was coupled with a volumetric hydrogen measurement, allowing a simultaneous thermodynamic and kinetic study of the reaction. At the end of the reaction, the catalyst was characterized ex situ by TEM, XRD, magnetism, N2 adsorption, TGA–DTA, and the liquid hydrolysis products were analyzed by Wet-STEM and 11B-NMR. The in situ preparation method made it possible to form nanoparticles (<12 nm) of Co2B which are the active phase for the hydrolysis reaction. In semi-batch conditions, the Co2B catalyst formed in situ is subsequently reduced by each borohydride addition and oxidized at the end of the hydrolysis reaction by OH in the presence of metaborate. A coating of the nanoparticles has been observed by calorimetry and physico-chemical characterization, corresponding to the formation of a 2–3 nm layer of cobalt oxide or hydroxide species.  相似文献   

19.
The physical properties and photoelectrochemical characterization of α-Fe2O3, synthesized by co-precipitation, have been investigated in regard to solar energy conversion. The optical gap is found to be 1.94 eV and the transition is indirectly allowed. The chemical analysis reveals an oxygen deficiency and the oxide exhibits n-type conductivity, confirmed by a negative thermopower. The plot log σ vs 1/T shows linearity in the range (400-670 K) with the donor levels at 0.14 eV below the conduction band and a break at ∼590 K, attributed to the ionization of the donors. The conduction occurs by small polaron hopping through mixed valences Fe2+/3+ with an electron mobility μ400 K of 10−3 V cm2 s−1. α-Fe2O3 exhibits long term chemical stability in neutral solution and has been characterized photoelectrochemically to assess its activity as bias-free O2-photoanode. The flat band potential Vfb (−0.45VSCE) and the electron density ND (1.63 × 1018 cm−3) were determined, respectively, by extrapolating the linear part to C−2 = 0 and the slope of the Mott Schottky plot. At pH 6.5, the valence band (+1.35VSCE) is suitably positioned with respect to the O2/H2O level (+0.62 V) and α-Fe2O3 has been evaluated for the chemical energy storage through the photocatalytic reaction: (, ΔG = 213.36 kJ mol−1). The best photoactivity occurs in solution (0.025 M, pH 8) with an oxygen rate evolution of 7.8 cm3 (g catalyst)−1 h−1.  相似文献   

20.
xLiH + M composites, where M = Mg or Ti, are suggested as new candidates for negative electrode for Li-ion batteries. For this purpose, the xLiH + M electrode is prepared using the mechanochemical reaction: MHx + xLi → xLiH + M or by simply grinding a xLiH + M mixture. The most promising electrochemical behaviour is obtained with the (2LiH + Mg) composite prepared via a mechanochemical reaction between MgH2 and metallic Li leading to a very divided composite in which Mg crystallites of 20 nm size are embedded in a LiH matrix. Reversible capacities of 1064 mAh g−1 (three times as much as the one of graphite) and 600 mAh g−1 are reached for these phase mixtures after 1 and 28 h of grinding in vertical and planetary mill, respectively. The (2LiH + Ti) mixture prepared via the mechanochemical reaction between TiH2 and Li exhibits a reversible capacity of 428 mAh g−1. From X-ray diffraction measurements, the performances of the electrodes are attributed to the electrochemical conversion reaction: M + xLiH ↔ MHx + xLi+ + xe (M = Mg, Ti) followed for M = Mg by an alloying process where M reacts with lithium ions to form Mg1−xLix alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号