首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nickel, supported on porous alumina (γAl2O3), non-porous alumina (αAl2O3), and porous silica, was used to catalyze methane cracking in a fluidized bed reactor for hydrogen production. The effects of temperature, PCH4PCH4, and particle diameter, and their interactions, on methane conversion were studied with each catalyst. Temperature was the dominant parameter affecting the hydrogen production rate for all catalysts and particle diameter had the strongest effect on the total amount of carbon deposited. Maximum methane conversion as a function of support type followed the order Ni/SiO2 > Ni/αAl2O3 > Ni/γAl2O3. Nonetheless, better fluidization quality was obtained with Ni/γAl2O3. Methane conversion was increased by increasing temperature and particle size from 108 to 275 μm due to better fluidization achieved with 275 μm particles. Increasing the flow rate and methane partial pressure (PCH4PCH4) caused a drop in methane conversion. Tests were also run in a fixed bed reactor, and at constant weight hourly space velocity (WHSV), higher conversion was achieved in the fixed bed, but at the same time faster deactivation occurred since a higher methane conversion led to increase in carbon filament and encapsulating carbon formation rates. A critical problem with the fixed bed was the pressure build-up inside the reactor due to carbon accumulation. Finally, a series of cracking/regeneration cycle experiments were carried out in the fluidized bed reactor. The regeneration was performed through product carbon gasification in air. Ni/αAl2O3 and Ni/γAl2O3 activity decreased significantly with the first regeneration, which is attributed to Ni sintering during exothermic regeneration/carbon oxidation. However, Ni/SiO2 was thermally stable over at least three cracking/regeneration cycles, but mechanical attrition was observed.  相似文献   

2.
A series of experiments was conducted to study the deactivation and regeneration of activated carbon catalyst used for methane thermocatalytic decomposition to produce hydrogen. The catalyst becomes deactivated due to carbon deposition and six decomposition cycles of methane at temperatures of 850 and 950 °C, and five cycles of regeneration by using CO2 at temperatures of 900, 950 and 1000 °C were carried out to evaluate the stability of the catalyst. The experiment was conducted by using a thermobalance by monitoring the mass gain during decomposition or the mass lost during the regeneration with time. The initial activity and the ultimate mass gain of the catalyst decreased after each regeneration cycle at both reaction temperatures of 850 and 950 °C, but the amount is smaller under the more severe regenerating conditions. For the reaction at 950 °C, comparison between the first and sixth reaction cycles shows that the initial activity decreased by 69, 51 and 42%, while the ultimate mass gain decreased by 62%, 36% and 16% when CO2 gasification carried out at 900, 950 and 1000 °C respectively. Temperature -programmed oxidation profiles for the deactivated catalyst at reaction temperature of 950 °C and after several cycles showed two peaks which are attributed to different carbon characteristics, while one peak was obtained when the experiment was carried out at 850 °C. In conclusion, conducting methane decomposition at 950 °C and regeneration at 1000 °C showed the lowest decrease in the mass gain with reaction cycles.  相似文献   

3.
This work investigates the catalytic performance of an industrial steam reforming Ni/SiO2·MgO catalyst toward dry reforming of CH4 under periodic operation. The effects of cracking/regeneration temperatures and O2 addition during regeneration on the catalyst stability and activity were determined and various characterizations i.e. BET, SEM, XRD, and TPO were employed to relate the catalyst performance with its physical properties. It was found that, without O2 addition, the catalyst showed good stability at 650 °C but observed high deactivation at 750 °C due to the formation of encapsulating carbon. The addition of O2 along with CO2 can eliminate all deactivation at 750 °C and no significant loss of catalyst activity was observed for at least 12 cracking/regeneration cycles. The optimal performance for periodic operation was found at the condition with 5 min of the cracking step followed by 5 min of the regeneration step at 750 °C with CO2/O2 ratio of 7/3.  相似文献   

4.
Catalytic decomposition of methane (CDM) permits obtaining hydrogen in high yields and – what is essential – it does not lead to release of CO2. Unfortunately, most of the catalysts used in this process undergo fast deactivation. Their possible regeneration, consisting in the removal of pore blocking carbonaceous deposit of low catalytic activity, leads to generation of undesirable carbon dioxide. An alternative solution for maintaining high catalyst activity in the CDM reaction can be generation of the catalytically active carbonaceous deposit on its surface. Such a deposit can be obtained by decomposition of different organic substances. This paper reports on methane decomposition carried out in the presence of propylene (used in the concentration of 10 or 20%). The reaction was performed at three temperatures of 750 °C, 850 °C or 950 °C. Three types of activated carbon were tested as catalysts: the first one was obtained by activation of pine wood biomass with Na2CO3, whereas the second and third ones were commercial carbons (WG-12 and Norit RX3 Extra). According to the results, the addition of propylene to the CDM system effectively reduces deactivation of the activated carbon catalysts and permits fast stabilisation of their catalytic activity at a high level.  相似文献   

5.
Thermo-catalytic decomposition of methane using carbons as catalyst is a very attractive process for free CO2–hydrogen production. One of the main drawbacks for the sustainability of the process is catalyst deactivation. In this work, regeneration of a deactivated active-carbon catalyst has been studied using CO2 as activating agent under different regeneration conditions. It has been stated that during the regeneration stage, a compromise between the regeneration of the initial properties of the catalyst and the burn-off is needed in order to keep the sustainability of the process. Three deactivation–regeneration cycles have been performed for two sets of regeneration conditions. A progressive decreasing in the burn-off, surface area and surface oxygenated groups after each decomposition/regeneration cycle is observed. It can be explained considering that the carbon removed during the regeneration steps is not the carbon deposited from methane but the remaining initial catalyst, which is less resistant to gasification. The implication is that after three cycles of decomposition/regeneration, most of the carbon sample consists of carbon formed during the process since the initial catalyst has been gasified.  相似文献   

6.
The study evaluates the effect of forced periodic cycling between methane dry reforming and carbon regeneration using a gasifying agent, such as carbon dioxide. The activity of Ce-promoted Ni–CO/Al2O3 catalyst was evaluated in a methane dry reforming process using a fixed-bed reactor under steady-state and periodic operation. Forced cycling reactions (reforming and regeneration) were conducted by manipulating the reactor feed between methane dry reforming and catalyst gasification using CO2 at cycle periods of 10, 20, and 30 min, and cycle splits of 0.8, 0.6, and 0.4. The physicochemical properties of fresh and spent catalysts were evaluated using several characterization techniques, such as the BET surface area, H2-chemisorption, and XRD. The results confirmed that methane dry reforming under periodic cycling provides an opportunity to improve methane conversion and increase the catalyst activity and longevity because of the periodic interruption of coke deposition. In particular, methane conversion deteriorated from 68% to 37% under steady-state within five hours of reforming, whereas a modest decrease in methane conversion (from 68% to 63% for a cycle period of 10 min and cycle split 0.8) was observed under periodic operation conditions. The results of catalyst characterization also demonstrated that the on-line removal of carbon during CO2 regeneration did not lead to any structural effect on the catalyst properties, and it absolutely restored the catalyst properties up to the values measured for the fresh catalyst.  相似文献   

7.
The production of hydrogen and filamentous carbon by means of methane decomposition was investigated in a fixed-bed reactor using iron-based catalysts. The effect of the textural promoter and the addition of Mo as a dopant affects the catalysts performance substantially: iron catalyst prepared with Al2O3 showed slightly higher catalytic performance as compared to those prepared with MgO; Mo addition was found to improve the catalytic performance of the catalyst prepared with MgO, whereas in the catalyst prepared with Al2O3 displayed similar or slightly poorer results. Additionally, the influence of the catalyst reduction temperature, the reaction temperature and the space velocity on the hydrogen yield was thoroughly investigated. The study reveals that iron catalysts allow achieving high methane conversions at operating temperatures higher than 800 °C, yielding simultaneously carbon nanofilaments with interesting properties. Thus, at 900 °C reaction temperature and 1 l g−1cat h−1 space velocity, ca. 93 vol% hydrogen concentration was obtained, which corresponds to a methane conversion of 87%. Additionally, it was found that at temperatures higher than 700 °C, carbon co-product is deposited mainly as multi walled carbon nanotubes. The textural and structural properties of the carbonaceous structures obtained are also presented.  相似文献   

8.
Solar catalytic decomposition of methane (SCDM) was investigated in a solar furnace facility with different catalysts. The aim of this exploratory study was to investigate the potential of the catalytic methane decomposition approach providing the reaction heat via solar energy at different experimental conditions. All experiments conducted pointed out to the simultaneous production of a gas phase composed only by hydrogen and un-reacted methane with a solid product deposited into the catalyst particles varying upon the catalysts used: nanostructured carbons either in form of carbon nanofibers (CNF) or multi-walled carbon nanotubes (MWCNT) were obtained with the metallic catalyst whereas amorphous carbon was produced using a carbonaceous catalyst. The use of catalysts in the solar assisted methane decomposition present some advantages as compared to the high temperature non-catalytic solar methane decomposition route, mainly derived from the use of lower temperatures (600–950 °C): SCDM yields higher reaction rates, provides an enhancement in process efficiency, avoids the formation of other hydrocarbons (100% selectivity to H2) and increases the quality of the carbonaceous product obtained, when compared to the non-catalytic route.  相似文献   

9.
10.
An anodic cermet of NiCu alloy and gadolinia doped ceria has been investigated for CH4 electro-oxidation in IT-SOFCs. Polarization curves have been recorded in the temperature range from 650 to 800 °C. A maximum power density of 320 mW cm−2 at 800 °C has been obtained in the presence of dry methane in an electrolyte-supported cell. The electrochemical behaviour during 1300 h operation in dry methane and in the presence of redox-cycles has been investigated at 750 °C; variation of the electrochemical properties during these experiments have been interpreted in terms of anode morphology modifications. The methane cracking process at the anode catalyst has been investigated by analysing the oxidative stripping of deposited carbon species.  相似文献   

11.
Nickel-based catalyst is highly active for hydrogen production through methane cracking reaction at moderate reaction temperature. However, Ni catalyst is easily deactivated by carbon encapsulation. In order to solve this problem, this research studies the effect of nickel precursors—nickel acetate (NA), nickel carbonate (NC) and nickel nitrate (NN)—on the activity and stability of nickel/bimodal porous silica (Ni/BPS) catalyst in methane cracking reaction. It was found that these nickel precursor solutions had different pH values, resulting in different interactions between surface silanol groups of BPS supports and Ni. Among these catalysts, Ni(NC)/BPS catalyst exhibited high nickel dispersion and weak interaction between Ni and BPS support; it then gave the highest CH4 conversion and better stability compared to the other catalysts. In addition, H2 yield of Ni(NC)/BPS catalyst was 2.90 and 1.40 times higher than those of Ni(NA)/BPS and Ni(NN)/BPS catalysts, respectively. Moreover, carbon nanofibers were grown in Ni(NC)/BPS and Ni(NN)/BPS catalysts, whereas carbon nanotubes were formed on Ni(NA)/BPS catalyst, due to the different nickel particle sizes, dispersions, and Ni—BPS support interactions.  相似文献   

12.
Nanostructured Ni-incorporated mesoporous alumina (MAl) materials with different Ni loading (7, 10 and 15 wt %) were prepared by a template assisted hydrothermal synthesis method and tested as catalysts for CO2 reforming of methane under different conditions (nickel loading, gas hourly space velocity (GHSV), reaction temperature and time-on-stream (TOS)). The most active catalyst tested (Ni(10 wt%)-MAl) showed a very high stability over 200 h compared to a Ni(10 wt%)/γ-Al2O3 prepared using a co-precipitation method which had a significant loss in activity after only ∼4 h of testing. The high stability of the Ni-MAl materials prepared by the template assisted method was due to the Ni nanoparticles in these catalysts being highly stable towards migration/sintering under the reaction conditions used (800 °C, 52,000 mL h−1 g−1). The low susceptibility of the Ni nanoparticles in these catalysts to migration/sintering was most likely due to a strong Ni-support interaction and/or active metal particles being confined to the mesoporous channels of the support. The Ni-MAl catalysts also had significantly lower amounts of carbon deposited compared to the catalyst prepared using the co-precipitation method.  相似文献   

13.
This work investigates the catalytic performance of nanocomposite Ni/ZrO2-AN catalyst consisting of comparably sized Ni (10–15 nm) and ZrO2 (15–25 nm) particles for hydrogen production from the cyclic stepwise methane reforming reaction with either steam (H2O) or CO2 at 500–650 °C, in comparison with a conventional Ni/ZrO2-CP catalyst featuring Ni particles supported by large and widely sized ZrO2 particles (20–400 nm). Though both catalysts exhibited similar activity and stability during the reactions at 500 and 550 °C, they showed remarkably different catalytic stabilities at higher temperatures. The Ni/ZrO2-CP catalyst featured a significant deactivation even during the methane decomposition step in the first cycle of the reactions at ≥600 °C, but the Ni/ZrO2-AN catalyst showed a very stable activity during at least 17 consecutive cycles in the cyclic reaction with steam. Changes in the catalyst beds at varying stages of the reactions were characterized with TEM, XRD and TPO–DTG and were correlated with the amount and nature of the carbon deposits. The Ni particles in Ni/ZrO2-AN became stabilized at the sizes of around 20 nm but those in Ni/ZrO2-CP kept on growing in the methane decomposition steps of the cyclic reaction. The small and narrowly sized Ni particles in the nanocomposite Ni/ZrO2-AN catalyst led to a selective formation of filamentous carbons whereas the larger Ni particles in the Ni/ZrO2-CP catalyst a preferred formation of graphitic encapsulating carbons. The filamentous carbons were favorably volatilized in the steam treatment step but the CO2 treatment selectively volatilized the encapsulating carbons. These results identify that the nature but not the amount of carbon deposits is the key to the stability of Ni/ZrO2 catalyst and that the nanocomposite Ni/ZrO2-AN would be a promising catalyst for hydrogen production via cyclic stepwise methane reforming reactions.  相似文献   

14.
The deactivation by coke deposition of Ni and Co catalysts in the steam reforming of ethanol has been studied in a fluidized bed reactor under the following conditions: 500 and 700 °C; steam/ethanol molar ratio, 6; space time, 0.14 gcatalyst h/gethanol, partial pressure of ethanol in the feed, 0.11 bar, and time on stream up to 20 h. The decrease in activity depends mainly on the nature of the coke deposited on the catalysts, as well as on the physical–chemical properties (BET surface area, pore volume, metal surface area) of the catalysts. At 500 °C (suitable temperature for enhancing the WGS reaction, decreasing energy requirements and avoiding Ni sintering), the main cause of deactivation is the encapsulating coke fraction (monoatomic and polymeric carbon) that blocks metallic sites, whereas the fibrous coke fraction (filamentous carbon) coats catalyst particles and increases their size with time on stream with a low effect on deactivation, especially for catalysts with high surface area. The catalyst with 10 wt% Ni supported on SiO2 strikes a suitable balance between reforming activity and stability, given that both the capability of Ni for dehydrogenation and C–C breakage and the porous structure of SiO2 support enhance the formation of filamentous coke with low deactivation. This catalyst is suitable for use at 500 °C in a fluidized bed, in which the collision among particles causes the removal of the external filamentous coke, thus minimizing the pore blockage of the SiO2. At 700 °C, the coke content in the catalyst is low, with the coke being of filamentous nature and with a highly graphitic structure.  相似文献   

15.
The stability of Mn-promoted Ni/SiO2 catalyst for methane CO2 reforming was investigated comparatively to that of Zr-promoted Ni/SiO2. The catalysts were prepared by the same impregnation method with the same controlled promoter contents and characterized by TPR, XRD, TG, SEM, XPS and Raman techniques. The addition of Mn to Ni/SiO2 catalyst promoted the dispersion of Ni species, leading to smaller particle size of NiO on the fresh Ni–Mn/SiO2 catalyst and the formation of NiMn2O4, which enhanced the interaction of the modified support with Ni species. Thus, the Ni–Mn/SiO2 catalyst showed higher activity and better ability of restraining carbon deposition than Ni/SiO2 catalyst. Besides, it exhibited stable activity at reaction temperatures over the range from 600 °C to 800 °C. However, the introduction of Zr increased the reducibility of Ni–Zr/SiO2, and the catalyst deactivated much more dramatically when the reaction temperature decreased due to its poor ability of restraining carbon deposition, and its activity decreased monotonically with time on stream at 800 °C.  相似文献   

16.
A new device is proposed to regenerate catalysts after hydrogen production via methane decomposition. Because carbon deposition inhibits catalytic reactions, carbon removal is indispensable for continuous hydrogen production. This device generated a swirling flow by gas supplied at the top and bottom along the inner surface of a tube. The swirling flow rotated the catalyst particles in the tube. Shear stresses on the particles caused by inter-particle and particle-wall impacts led to attrition. Carbon was mechanically removed from the particles by attrition and was elutriated with the flue gas. Ten cycles of methane decomposition and catalyst regeneration were performed using reduced ilmenite as a catalyst. Carbon was clearly removed by catalyst regeneration. Stable regeneration was confirmed by examination of weight changes of the particles caused by carbon deposition and removal during the cycles. Hydrogen production increased by 10% during the cycles than during continuous methane decomposition for 4 h.  相似文献   

17.
On the purpose to perform as functional layer of SOFCs operating on methane fuel, NiFe–ZrO2 alloy catalysts have been synthesized and investigated for methane partial oxidation reactions. Ni4Fe1–ZrO2 shows catalytic activity comparable to that of Ni–ZrO2 and superior to other Fe-containing catalysts. In addition, O2-TPO analysis indicates iron is also prone to coke formation; as a result, most of NiFe–ZrO2 catalysts do not show improved coking resistance than Ni–ZrO2. Anyway, Ni4Fe1–ZrO2 (Ni:Fe = 4:1 by weight) prepared by glycine-nitrate process shows somewhat less carbon deposition than the others. However, Raman spectroscopy demonstrates that the addition of Fe does reduce the graphitization degree of the deposited carbon, suggesting the easier elimination of carbon once it is deposited over the catalyst. Ni4Fe1–ZrO2 has an excellent long-term stability for partial oxidation of methane reaction at 850 °C. A solid oxide fuel cell with conventional nickel cermet anode and Ni4Fe1–ZrO2 functional layer is operated on CH4–O2 gas mixture to yield a peak power density of 1038 mW cm−2 at 850 °C, which is comparable to that of hydrogen fuel. In summary, the Ni4Fe1–ZrO2 catalyst is potential catalyst as functional layer for solid-oxide fuel cells operating on methane fuel.  相似文献   

18.
This paper presents the preparation of highly stable nano-porous Ni–Cu catalysts for simultaneous production of COx–free hydrogen and carbon nano-fibers. The main features of this work focuses on the optimization, methods of catalyst preparation and application of an experimental model for deactivation. The fresh catalysts and the deposited carbon were characterized by SEM, TEM, XRD and Raman spectroscopy. Whatever to be the preparation methods, performance tests showed that the presence of Cu as promoter in Ni–Cu–MgO catalysts, enhanced the catalytic activity, substantially at higher temperatures with the best result obtained for Ni–Cu–MgO catalyst prepared by one step sol- gel method, reaching a hydrogen concentration of 70 vol% (160.51 mol H2/mol Ni-1 h) and a smaller value of ID/IG (less imperfection) for produced carbon nano-fibers at 670 °C. Detailed rate-based model for deactivation of catalyst was found to be dependent on the time, reaction temperature and partial pressure of methane and indicated that the reaction of deactivation could be modeled by a simple hyperbolic model.  相似文献   

19.
Carbon blacks have recently gained attention as suitable catalysts for the COx-free hydrogen production by thermo-catalytic decomposition of methane (TCD) because of their stability and efficiency. In the present work, several commercial carbon blacks were studied as catalysts for the TCD of methane by varying the temperature and the methane space velocity. The BP2000 carbon black sample, which showed the highest activity in methane decomposition per mass of catalyst, was studied more thoroughly. Despite BP2000 exhibiting stable activity in the TCD of methane during several hours on stream, a long duration run carried out at 950 °C revealed that it finally became deactivated. The changes in the physicochemical properties (textural properties, surface chemistry and crystallinity) of the BP2000 sample at different stages of the catalyst lifetime were measured, and the main results obtained are presented here. The paper also discusses the potential of the production of a wide range of hydrogen–methane mixtures, which can be directly fed to an internal combustion engine, by means of TCD with carbonaceous catalysts.  相似文献   

20.
Biogas derived from livestock manure and food residue contains CO2 and H2S as well as methane. The effect of CO2 and H2S coexistence on the production of hydrogen and solid carbon by methane decomposition over iron oxide catalysts was investigated. The catalytic activity for methane decomposition was decreased by the coexistence of H2S. Moreover, the activity decrease was aggravated by the coexistence of CO2 as well as H2S, and higher temperature was required to mitigate the activity decrease by the coexistence of CO2. By increasing the amount of catalyst, the upstream catalyst was preferentially poisoned, but the downstream catalyst developed catalytic activity thanks to its sacrifice. With 2 g of catalyst, the maximum conversion of pure methane was about 85% at 840 °C, but it was slightly less than 80% in the presence of H2S or H2S + CO2. When the catalyst amount was increased to 4 g, the conversion of pure methane was about 90% at 800 °C, but 84% in the presence of H2S and 80% in the presence of H2S + CO2. The poisoning by H2S was irreversible at low temperatures but became reversible at higher temperatures. Since H2S is adsorbed by the deposited carbon, the procedure for further removal of H2S may be omitted. The coexistence of H2S also affected the shape of the deposited carbon. Although carbon-based catalysts are known to be effective for methane decomposition in the presence of H2S, iron oxide catalysts have the advantage of superior methane conversion at low temperatures. By flowing methane with CO2 and H2S from the downstream side after the reaction flowing from the upstream side for a certain period of time, the catalytic lifetime was drastically extended and the amount of hydrogen and solid carbon produced was dramatically increased, compared to the case of flowing from upstream all the way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号