首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
We use a combined finite element method (FEM)/computational fluid dynamics (CFD) methodology to numerically investigate the effects of gas diffusion layer (GDL) compression/intrusion on the performance of a phosphoric acid-doped polybenzimidazole (PBI) membrane-based high temperature proton exchange membrane fuel cell (HT-PEMFC). Three-dimensional (3-D) FEM simulations are conducted under various displacement clamping conditions to analyze cell deformation characteristics. Then, a multi-dimensional HT-PEMFC CFD model is applied to the deformed cell geometries to study transport and electrochemical processes during HT-PEMFC operations. Our numerical simulation results reveal that the maximum stresses in the deformed GDLs always occur near the edge of the ribs. The combined effects of GDL compression/intrusion considerably increase spatial non-uniformity in the species and current density distributions, and reduce cell performance.  相似文献   

2.
Intrusion of the gas diffusion layer (GDL) into gas channels due to fuel cell compression has a major impact on the gas flow distribution, fuel cell performance and durability. In this work, the effect of compression resulting in GDL intrusion in individual parallel PEMFC channels is investigated. The intrusion is determined using two methods: an optical measurement in both the in-plane and through-plane directions of GDL, as well as an analytical fluid flow model based on individual channel flow rate measurements. The intrusion measurements and estimates obtained from these methods agree well with each other. An uneven distribution of GDL intrusion into individual parallel channels is observed. A non-uniform compression force distribution derived from the clamping bolts causes a higher intrusion in the end channels. The heterogeneous GDL structure and physical properties may also contribute to the uneven GDL intrusion. As a result of uneven intrusion distribution, severe flow maldistribution and increased pressure drop have been observed. The intrusion data can be further used to determine the mechanical properties of GDL materials. Using the finite element analysis software program ANSYS, the Young's modulus of the GDL from these measurements is estimated to be 30.9 MPa.  相似文献   

3.
A comprehensive, three‐dimensional model of a proton exchange membrane (PEM) fuel cell based on a steady state code has been developed. The model is validated and further be applied to investigate the effects of various porosity of the gas diffusion layer (GDL) below channel land areas, on thermal diffusivity, temperature distribution, oxygen diffusion coefficient, oxygen concentration, activation loss and local current density. The porosity variation of the GDL is caused by the clamping force during assembling, in terms of various compression ratios, that is, 0%, 10%, 20%, 30% and 40%. The simulation results show that the higher compression ratio on the GDL leads to lower porosity, and this is helpful for the heat removal from the cell. The compression effects of the GDL below the land areas have a contrary impact on the oxygen diffusion coefficient, oxygen concentration, cathode activation loss, local current density and cell performance. Generally, a lower porosity leads to a smaller oxygen diffusion coefficient, a less uniform oxygen concentration, a higher activation loss, a smaller local current density and worse cell performance. In order to have a better cell performance, the clamping force on the cell should be as low as possible but ensure gas sealing. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
In this study, a three-dimensional, non-isothermal, two-phase flow mathematical model is developed and applied to investigate the effect of the GDL deformation on transport phenomena and performance of proton exchange membrane (PEM) fuel cells with interdigitated flow fields. The thickness and porosity of the GDL is decreased after compression, and the corresponding transport parameters (permeability, mass diffusivity, thermal conductivity and electrical conductivity) are affected significantly. The alterations in geometry and transport parameters of the GDL are considered in the mathematical model. The oxygen concentration, temperature, liquid water saturation and volumetric current density distributions of PEM fuel cells without compression are investigated and then compared to the PEM fuel cells with various assembly forces. The numerical results show that the cell performance is considerably improved with increasing assembly forces. However, the pressure drops in the gas flow channels are also substantially increased. It is concluded that the assembly force should be as small as possible to decrease the parasitic losses with consideration of gas sealing concern.  相似文献   

5.
A numerical method is developed to study the effect of the compression deformation of the gas diffusion layer (GDL) on the performance of the proton exchange membrane fuel cell (PEMFC). The GDL compression deformation, caused by the clamping force, plays an important role in controlling the performance of PEMFC since the compression deformation affects the contact resistance, the GDL porosity distribution, and the cross-section area of the gas channel. In the present paper, finite element method (FEM) is used to first analyze the ohmic contact resistance between the bipolar plate and the GDL, the GDL deformation, and the GDL porosity distribution. Then, finite volume method is used to analyze the transport of the reactants and products. We investigate the effects of the GDL compression deformation, the ohmic contact resistivity, the air relative humidity, and the thickness of the catalyst layer (CL) on the performance of the PEMFC. The numerical results show that the fuel cell performance decreases with increasing compression deformation if the contact resistance is negligible, but an optimal compression deformation exists if the contact resistance is considerable.  相似文献   

6.
Gas diffusion layer (GDL) is a porous medium placed between the flow field and the catalyst layer in a proton exchange membrane fuel cell (PEMFC), and experiences electrochemical aging and mechanical stresses during usage. In the present work carbon cloth and carbon paper, two commonly used GDLs in PEMFC, are electrochemically aged in a simulated PEMFC environment. The results indicate that carbon paper is less prone to oxidation when compared to carbon cloth, which can be attributed to higher degree of graphitization of carbon fibers in the paper. However, carbon paper suffers greater loss of structural stability due to the adverse effects of aging on the fiber matrix interface. Increased weakening of paper when compared to cloth, after electrochemical aging, results in higher residual strain when subjected to cyclic compression and an increased intrusion of paper into the flow field channel when compared to cloth GDL.  相似文献   

7.
Proton exchange membrane fuel cells have been promoted due to improved breakthrough and increased commercialization. The assembly pressure put on a single cell and a fuel cell stack has important influence on the geometric deformation of the gas diffusion layers (GDLs) resulting in a change in porosity, permeability, and the resistance for heat and charge transfer in proton exchange membrane fuel cells. In this paper, both the finite element method and the finite volume method are used, respectively, to predict the GDL deformation and associated effects on the geometric parameters, porosity, mass transport property, and the cell performance. It is found that based on the isotropic Young's modulus and the finite element method, the porosity and thickness under a certain assembly pressure are non‐homogeneous across the fuel cell in the in‐plane direction. The variations of the porosity change and compression ratio in the cross‐section plane are localized by three zones, that is, a linear porosity zone, a constant porosity zone, and a nonlinear porosity zone. The results showed that the GDL porosity and compression ratios maintain linear and nonlinear changes in the zone above the shoulders and the zone under the channel but close to the shoulder, respectively. However, a constant value is kept above the middle of the channel. The obtained non‐homogeneous porosity distribution is applied together with the deformed GDL for further computational fluid dynamics analysis, in which the finite volume method is implemented. The computational fluid dynamic results reveal that a higher assembly pressure decreases the porosity, GDL thickness, gas flow channel cross‐sectional areas, oxygen diffusion coefficient, oxygen concentration, and cell performance. The maximum oxygen mole fraction occurs where the maximum porosity exists. A sufficient GDL thickness is required to ensure transfer of fresh gas to the reaction sites far away from the channel. However, the reduction of porosity is a dominating factor that decreases the cell performance compared with the decreased gas channel flow area and GDL thickness in the assembly condition. Therefore, the assembly pressure should be balanced to consider both the cell performance and gas sealing security. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
Improving reactant distribution is an important technological challenge in the design of a PEMFC. Flow field and the Gas Diffusion Layer (GDL) distribute the reactant over the catalyst area in a cell. Hence it is necessary to consider flow field and GDL together to improve their combined effectiveness. This paper describes a simple and unique off-cell experimental setup developed to determine pressure as a function of position in the active area, due to reactant flow in a fuel cell flow field. By virtue of the experimental setup being off-cell, reactant consumption, heat production, and water generation, are not accounted as experienced in a real fuel cell. A parallel channel flow field and a single serpentine flow field have been tested as flow distributors in the experimental setup developed. In addition, the interaction of gas diffusion layer with the flow distributor has also been studied. The gas diffusion layer was compressed to two different thicknesses and the impact of GDL compression on overall pressure drop and pressure distribution over the active area was obtained using the developed experimental setup. The results indicate that interaction of GDL with the flow field and the effect of GDL compression on overall pressure drop and pressure distribution is more significant for a serpentine flow field relative to a parallel channel flow field.  相似文献   

9.
In this study, a two-fluid (TF) model is developed for two-phase flows in proton exchange membrane fuel cells (PEMFCs). The drag force and lift force between gas and liquid phase are considered in N-S equations. In addition, a simplified model is introduced to obtain the liquid water droplet detachment diameter on the gas diffusion layer (GDL)/channel interface which involves the properties of the GDL/channel interface (contact angle and surface tension). The TF model and the simplified model for the prediction of water droplet detachment diameter on GDL/channel interface are validated by the comparison between the experimental data and the model results, respectively. The effect of the properties of GDL/channel interface (contact angle and surface tension) on two-phase behavior in PEMFCs is investigated, The results show that a high contact angle and a low surface tension are advantageous for liquid water removal in the gas channel and the GDL even though a low surface tension will lead to a low capillary force in the GDL.  相似文献   

10.
The constructive design of a flow field layout and the channel cross section parameters from a metallic half- or bipolar plate can have a significant influence on the performance characteristics of a fuel cell. Especially the intrusion effect of Gas Diffusion Layers (GDL) under preload conditions leads to a narrowing of the effective flow channel cross section at the active area. In this work, it is assumed that the intrusion effect is dependent on the channel parameters from metallic channel plates. This aspect is investigated experimentally. First, the developed GDL test bench, as well as the test methodology, is explained. Further, a general definition of the channel parameters is shown. Two general equations will be derived, with this it is possible to calculate the channel parameters and channel cross section area analytically. Furthermore, an analytic-empirical intrusion model is derived and validated based on the measurement results. With the intrusion model, it is possible to calculate the effective cross-sectional area with a good approximation. These results can be used for further investigations, for example for flow simulations. Finally, the investigation results of two variation series are listed. At the first series the parameter channel width (CW) and at the second series the channel-to-rib-ratio (CRR) is varied. The considered two measurement parameters are the intrusion in the channel middle and the channel width reduction. It turns out that the investigated both channel parameters influences the GDL intrusion behavior. Particularly, between the channel width parameter and the intrusion in channel middle, a significant dependency can be determined. In the presented experimental series, a certain channel width can be detected, over that the intrusion does not increase any further. Moreover, in the experimental series the dependency between CRR and intrusion in the middle of the channel as well as between CRR and the channel width reduction can be demonstrated. As the CRR increases, both results tend to decrease. In a concluding error analysis, the test results are critically examined and evaluated. In principle, however, the assumption of the dependence between intrusion effect and channel parameters can be sufficiently proved by means of the developed test bench and the test method.  相似文献   

11.
12.
The purpose of the present study is to investigate both experimentally and theoretically the effect of GDL porosity non-uniformity on fuel cell performance due to clamping force. In the experimental study, a unit cell with a single serpentine channel is employed to test the effect of compression force on cell performance. The degree of GDL deformation is achieved by varying the thickness of a gasket spacer. In the numerical simulations, a three-dimensional model of the same geometry as the test cell is developed to simulate coupled electrochemical kinetics, current distribution, hydrodynamics, and multi-component transport. The properties of the GDL used in the simulation are expressed as functions of the compression ratio, which is defined as the ratio of compressed GDL thickness versus its uncompressed thickness. The simulation results are found to be in good agreement with experimental data in overall fuel cell performance. Numerical results obtained by using uniformly distributed GDL properties are compared with the results with non-uniform properties and it is found that although the overall cell performance is similar, local distributions from both models are significantly different. Based on the computational model, numerical simulations are performed to investigate the effects of compression ratio on local species, temperature and current distributions as well as the effects on overall cell performance. The distributions of temperature, heat flux, species concentration, current density and saturation are found to be highly oscillating in nature between the local rib and channel locations. Furthermore, the higher the compression ratio, the better is the cell performance and the larger is the fluctuation amplitude. Finally, the higher the compression ratio, the more are the saturation, water flooding and hydrogen deficiency downstream.  相似文献   

13.
A correlation between anisotropic bending stiffness of a gas diffusion layer (GDL) and land/channel width ratios of metallic bipolar plates (MBPs) in polymer electrolyte membrane fuel cells has been systematically investigated. IV performances of the fuel cells with 90° GDLs, whose directions of higher stiffness are perpendicular to the direction of the major flow field, are generally higher than those with 0° GDLs, whose directions of higher stiffness are parallel with the direction of the major flow field. However, the differences of IV performances and high-frequency resistance values between 0° and 90° GDL cells gradually decrease with increasing land/channel width ratio, because of the reduced anisotropic stiffness effects of the GDLs due to the better support by the MBPs with wider lands. The cross-sectional images of GDLs upon compression indicate that the 0° GDL appears to be more deformed and intruded into channel than the 90° GDL under the narrowest lands, whereas both 0° and 90° GDLs show very little intrusion and deformation under the widest lands. The results clearly explain why some MBPs (i.e., narrower lands) exhibit strong effects of GDL’s anisotropic stiffness on cell performances, whereas other MBPs (i.e., wider lands) do not experience such effects.  相似文献   

14.
Liquid water transport in a polymer electrolyte fuel cell (PEFC) is a major issue for automotive applications. Mist flow with tiny droplets suspended in gas has been commonly assumed for channel flow while two-phase flow has been modeled in other cell components. However, experimental studies have found that two-phase flow in the channels has a profound effect on PEFC performance, stability and durability. Therefore, a complete two-phase flow model is developed in this work for PEFC including two-phase flow in both anode and cathode channels. The model is validated against experimental data of the wetted area ratio and pressure drop in the cathode side. Due to the intrusion of soft gas diffusion layer (GDL) material in the channels, flow resistance is higher in some channels than in others. The resulting flow maldistribution among PEFC channels is of great concern because non-uniform distributions of fuel and oxidizer result in non-uniform reaction rates and thus adversely affect PEFC performance and durability. The two-phase flow maldistribution among the parallel channels in an operating PEFC is explored in detail.  相似文献   

15.
In the present study we report on numerical investigations into the effects of compression on the performance of a unit cell. The focus of this study is how the transport properties of the gas diffusion layer (GDL) material, specifically porosity and permeability, affect numerical predictions of cell performance. Experimental data of porosity and permeability of uncompressed and compressed GDLs were obtained using a porometer, and used in numerical simulations. A 3D model with two parallel channels and an membrane electrode assembly (MEA) is constructed for the calculations. Three different configurations of transport properties were tested, i.e. uniform uncompressed GDL properties, uniform compressed GDL properties, and non-homogeneous GDL properties. It is found that the non-homogeneous case shows noticeable differences in predicted cell performance. For the non-homogenous case, simulations with a pressure difference between two cathode channels were carried out to gain insight into the effect of cross-channel flow on the overall prediction of cell performance. We found that the cross-channel flow changes local current density distribution primarily on the high-pressure channel. The present study demonstrates the importance of the proper use of transport properties for the compressed portion of the GDL.  相似文献   

16.
Water management in polymer-electrolyte membrane fuel cells (PEMFCs) has a major impact on fuel cell performance and durability. To investigate the two-phase flow patterns in PEMFC gas flow channels, the volume of fluid (VOF) method was employed to simulate the air-water flow in a 3D cuboid channel with a 1.0 mm × 1.0 mm square cross section and a 100 mm in length. The microstructure of gas diffusion layers (GDLs) was simplified by a number of representative opening pores on the 2D GDL surface. Water was injected from those pores to simulate water generation by the electrochemical reaction at the cathode side. Operating conditions and material properties were selected according to realistic fuel cell operating conditions. The water injection rate was also amplified 10 times, 100 times and 1000 times to study the flow pattern formation and transition in the channel. Simulation results show that, as the flow develops, the flow pattern evolves from corner droplet flow to top wall film flow, then annular flow, and finally slug flow. The total pressure drop increases exponentially with the increase in water volume fraction, which suggests that water accumulation should be avoided to reduce parasitic energy loss. The effect of material wettability was also studied by changing the contact angle of the GDL surface and channel walls, separately. It is shown that using a more hydrophobic GDL surface is helpful to expel water from the GDL surface, but increases the pressure drop. Using a more hydrophilic channel wall reduces the pressure drop, but increases the water residence time and water coverage of the GDL surface.  相似文献   

17.
Water transport in gas diffusion layer (GDL) is a very important issue for high power density Proton Exchange Membrane Fuel Cell (PEMFC). During the GDL and bipolar plate (BPP) assembly process, the water transport behavior is greatly influenced by the nonuniform compression on the GDL, which leads to uneven distribution of the internal mass transport pores. In this study, an integrated model is developed to predict the water transport in nonuniform compressed GDL. Firstly, a GDL compression deformation model is built to obtain the relationship between the GDL deformation and assembly clamping force based on energy method. Then, a water transport model is established by considering the probability density function (PDF) of the pore size for the compressed GDL. The accuracy of the integrated model has been verified by comparing with the finite element method (FEM) and the computational fluid dynamics (CFD) simulation results. The influence of assembly clamping force, GDL thickness and channel geometry are analyzed based on the integrated model. Drainage pressure increases monotonically with the assembly clamping force and is divided into three stages. For the baseline case, 0.2 mm of GDL thickness and small rib-channel ratio is conducive to improving drainage capacity. It provides the guidance for matching of GDL/BPP assembly condition and performance prediction of PEMFC.  相似文献   

18.
The design of the flow field greatly affects the flow distribution and the final performance of the proton exchange membrane fuel cell (PEMFC) system. The clamping force between the gas diffusion layer (GDL) and the flow field plate (FFP) will cause the inhomogeneous compression of the GDL. Then the GDL will be intruded into the reactant gas channels and eventually change the flow distribution. This paper presents a study on the effect of the intrusion of the GDL on the flow field in a PEMFC, and tries to explain the reason for poor performance of the previous design of the flow field other than those have been studied in other papers such as GDL roughness, porosity, etc. First of all, a linear analytical model is used to analyze the sensitivities of the flow field to the GDL intrusion, and then used to estimate the effect of the GDL intrusion on the flow field distribution. Secondly, a multi-objective optimization model is proposed to eliminate the nonuniform distribution in the flow field with the GDL intrusion taken into consideration. Subsequently, three different designs are analyzed and compared with each other as a demonstration to show the effect of the GDL intrusion. From the analysis results, it is recommended that the effect of the GDL intrusion on the multi-depth flow field should be taken into consideration and the flow field should be insensitive to the GDL intrusion to obtain high robust performance. The results obtained in the study provide the designer some useful guidelines in the concept design of flow field configurations.  相似文献   

19.
The present study applied Lattice Boltzmann method (LBM) for examining the transport of liquid water in a GDL carbonic paper of polymer electrolyte membrane (PEM) fuel cells. The stochastic method is used for GDL carbonic paper reconstruction. In order to study the behavior of liquid water, different simulations are carried out on the reconstructed GDL. While removing from the GDL of a PEM fuel cell, the dynamics of liquid water is simulated by LBM in this study. The effects that the wettability of GDL imposes on the removal process and liquid water distribution are investigated. In addition, the dynamic behaviors and the saturation process of the liquid water in GDL in a steady state and a transient mode are also explored. The effects of surface wettability on the effective clusters in GDL, merging of different clusters and the loops developed by the fingers are investigated. Moreover, the effects of mixed wettability on the liquid water dynamic behavior and liquid water saturation within the GDL are studied in detail. The results show that the best location for insertion of the hydrophilic layer inside the GDL is near the GDL-GC interface. In this case, the time required for liquid water to reach the GDL/GC interface is reduced about 17% than purely hydrophobic GDL. A decrease of 18.7% in the steady-state saturation level is also observed by insertion of hydrophilic layer; therefore, use of hydrophilic layer near GDL-GC interface is more effective than increasing the contact angle of GDL-fibers. Different validation studies are also reported to show the accuracy of the model.  相似文献   

20.
In this study, the effect of clamping pressure on the performance of a proton exchange membrane fuel cell (PEMFC) is investigated for three different widths of channel. The deformation of gas diffusion layer (GDL) due to clamping pressure is modeled using a finite element method, and the results are applied as inputs to a CFD model. The CFD analysis is based on finite volume method in non-isothermal condition. Also, a comparison is made between three cases to identify the geometry that has the best performance. The distribution of temperature, current density and mole fraction of oxygen are investigated for the geometry with best performance. The results reveal that by decreasing the width of channel, the performance of PEMFC improves due to increase of flow velocity. Also, it is found that intrusion of GDL into the gas flow channel due to assembly pressure deteriorates the PEMFC performance, while decrease of GDL thickness and GDL porosity have smaller effects. It is shown that assembly pressure has a minor effect on temperature profile in the membrane-catalyst interface at cathode side. Also, assembly pressure has a significant effect on ohmic and concentration losses of PEMFC at high current densities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号