首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Efficient Cu incorporated TiO2 (Cu–TiO2) photocatalysts for hydrogen generation were fabricated by four methods: in situ sol–gel, wet impregnation, chemical reduction of Cu salt, and in situ photo-deposition. All prepared samples are characterized by good dispersion of Cu components, and excellent light absorption ability. Depending on the preparation process, hydrogen generation rates of the as-prepared Cu–TiO2 were recorded in the range of 9–20 mmol h−1 gcatalyst−1, which were even more superior to some noble metal (Pt/Au) loaded TiO2. The various fabrication methods led to different chemical states of Cu, as well as different distribution ratio of Cu between surface and bulk phases of the photocatalyst. Both factors have been proven to influence photocatalytic hydrogen generation. In addition, the Cu content in the photocatalyst played a significant role in hydrogen generation. Among the four photocatalysts, the sample that was synthesized by in situ sol–gel method exhibited the highest stability. High efficiency, low cost, good stability are some of the merits that underline the promising potential of Cu–TiO2 in photocatalytic hydrogen generation.  相似文献   

2.
TiO2 photocatalyst with deposited CuO (CuO-TiO2) was synthesized by the impregnation method using P25 (Degussa) as support, and exhibited high photocatalytic hydrogen generation activity from methanol/water solution. A substantial hydrogen evolution rate of 10.2 ml min−1 (18,500 μmol h−1 g−1catalyst) was observed over this efficient CuO-TiO2 with optimal Cu content of 9.1 mol% from an aqueous solution containing 10 vol% methanol; this improved hydrogen generation rate is significantly higher than the reported Cu-containing TiO2, including some Pt and Pd loaded TiO2. Optimal Cu content of 9.1 mol% provided maximum active sites and allowed good light penetration in TiO2. Over this efficient CuO-TiO2, the hydrogen generation rate was accelerated by increasing the methanol concentration according to Freundlich adsorption isotherm. However, the photocatalytic hydrogen generation rate was suppressed under long time irradiation mainly due to accumulation of by-products, reduction of CuO and copper leaching, which requires further investigation.  相似文献   

3.
Photo-induced reforming of methanol, ethanol, glycerol and phenol at room temperature for hydrogen production was investigated with the use of ultra-small Pt nanoparticles (NPs) loaded on TiO2 nanotubes (NTs). The Pt NPs with diameters between 1.1 and 1.3 nm were deposited on TiO2 NTs by DC-magnetron sputtering (DC-MS) technique. The photocatalytic hydrogen rate achieved an optimum value for a loading of about 1 wt% of Pt. Apparent quantum yield for hydrogen generation was measured for methanol and ethanol water solutions reaching a maximum of 16% under irradiation with a wavelength of 313 nm in methanol/water solution (1/8 v/v). Pt NPs loaded on TiO2 NTs represented also a true water splitting catalyst under UV irradiation and pure distilled water. DC-MS method appears to be a technologically simple, ecologically benign and potentially low-cost process for production of an efficient photocatalyst loaded with ultra-small NPs with precise size control.  相似文献   

4.
Tungsten carbide microsphere with hexagonal close-packed W2C structure was synthesized by a polymer-induced carburization method. The synthesis process and physicochemical properties were investigated and optimized to obtain uniform spherical morphology, high surface area and high chemisorption capacity. The tungsten carbide loaded with only 7.5 wt% of platinum was tested for cathodic hydrogen evolution from water and electrocatalytic activity was compared to commercial 20 wt% Pt/Vulcan XC-72R carbon (commercial E-Tek catalyst). The current density of W2C microsphere (without Pt) was much lower than the commercial E-Tek catalyst. But, when a small amount of platinum was loaded to the W2C microsphere, the current density became higher than that of the commercial E-Tek catalyst, demonstrating synergistic effect between Pt and W2C. The activity per mass of Pt for Pt/W2C was 2.3–3.2 times higher than that of E-Tek Pt/C catalyst.  相似文献   

5.
Highly-ordered, vertically oriented TiO2 nanotubes are synthesized, and their hydrogen sensing properties are investigated. Self-organized TiO2 nanotube arrays are grown by anodic oxidation of a titanium foil in an aqueous solution that contains 1 wt% hydrofluoric acid at 20 °C. We use a potential ramp at a rate of 100 mV s−1, increasing from the initial open-circuit potential (OCP) to 20 V, and this final potential of 20 V is then held constant during the anodization process. The fabricated TiO2 nanotubes are approximately 1 μm in length and 90 nm in diameter. For the sensor measurements, two platinum pads are used as electrodes on the TiO2 nanotube arrays. The hydrogen sensing characteristics of the sensor are analyzed by measuring the sensor responses ((I − I0)/I0) in the temperature interval of 20–150 °C. We find that the sensitivity of the sensor is approximately 20 for 1000 ppm H2 exposure at room temperature, and increases with increasing temperature. The sensing mechanism of the TiO2 nanotube sensor could be explained with chemisorption of H2 on the highly active nanotube surface.  相似文献   

6.
A series of ZnIn2S4 photocatalysts was synthesized via a cetyltrimethylammoniumbromide (CTAB)-assisted hydrothermal method. These ZnIn2S4 products were characterized by X-ray diffraction (XRD), UV–visible absorption spectra (UV–vis) and scanning electron microscopy (FESEM). The effects of hydrothermal time and CTAB on the crystal structures, morphologies and optical properties of ZnIn2S4 products were discussed in detail. The photocatalytic activities of the as-prepared samples were evaluated by photocatalytic hydrogen production from water under visible-light irradiation. It was found that the photocatalytic activities of these ZnIn2S4 products decreased with the hydrothermal time prolonging while increased with the amount of CTAB increasing. The highest quantum yield at 420 nm of ZnIn2S4 photocatalyst, which was prepared through the CTAB (9.6 mmol)-assisted hydrothermal procedure for 1 h, was determined to be 18.4%. The optimum amount of Pt loaded for the ZnIn2S4 photocatalyst was about 1.0 wt%, under the present photocatalytic system.  相似文献   

7.
Monolithic catalysts were prepared by washcoating Ce0.8Zr0.2O2 slurries and then impregnating platinum or rhenium onto cordierite substrates, and characterized by Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), inductively coupled plasma (ICP), temperature-programmed-reduction (TPR) and temperature-programmed deposition of CO (CO-TPD) techniques. The effects of preparation parameters on the catalytic performance for water gas shift (WGS) reaction were investigated in details, including different Ce0.8Zr0.2O2 powder as washcoat, coat loadings, metal loadings, Pt/Re weight ratio and impregnation sequences. In addition, pyrophoricity (exposure to oxygen stream) and long-term stability were carried out over monolithic catalysts with the optimized composition. The results showed that Ce0.8Zr0.2O2 prepared by microemulsion methods was the preferred washcoat, and that 50 wt% Ce0.8Zr0.2O2 coat loading and 0.68 wt% Pt loading were required to reduce CO content to ca. 1%. The optimal catalytic performance was achieved over 0.11 wt% Re/0.34 wt% Pt/50 wt% Ce0.8Zr0.2O2–M/cordierite catalyst. Pyrophoricity tests indicated that no obvious activity loss was observed over 0.11 wt% Re/0.34 wt% Pt/50 wt% Ce0.8Zr0.2O2–M/cordierite catalyst after three exposures to oxygen; while 17% of the initial activity was lost over industrial B206 after one exposure. Monolithic 0.11 wt% Re/0.34 wt% Pt/50 wt% Ce0.8Zr0.2O2–M/cordierite catalyst exhibited good stability during 80 h on-stream test.  相似文献   

8.
Highly ordered TiO2 nanotube arrays for hydrogen production have been synthesized by electrochemical anodization of titanium sheets. Under solar light irradiation, hydrogen generation by photocatalytic water splitting was carried out in the two-compartment photoelectrochemical cell without any external applied voltage. The hydrogen gas and oxygen generated on Pt side and on TiO2 nanotubes side respectively were efficiently separated. The effect of anodization time on the morphology structures, photoelectrochemical properties and hydrogen production was systematically investigated. Due to more charge carrier generation and faster charge transfer, a maximum photoconversion efficiency of 4.13% and highest hydrogen production rate of 97 μmol h−1cm−2 (2.32 mL h−1cm−2) were obtained from TiO2 nanotubes anodized for 60 min.  相似文献   

9.
Synthetic approaches/methodologies can change the properties of nanoparticles significantly. In this study, the photocatalytic property of self (Ti3+) doped TiO2 nanoparticles was modified by synthesizing through different routes. Solvothermal (T-Sol), sonochemical (T-Son) and polyol (T-Pol) methods were employed to prepare TiO2 nanoparticles and the photocatalytic activities of these samples were compared with that of the sample prepared by precipitation using ammonia solution (T-Ppt). All samples had particle size below 30 nm except T-Son, where small nanoparticles existed as large spherical agglomerates with size around 500 nm. Surface area and porosity measurements of these different TiO2 samples showed a significant dependency on the synthesis method. UV–Visible absorption spectra showed the onset of absorption at ∼440 nm for all samples due to the presence of defect levels originating from anion vacancies. Photocatalytic activity for hydrogen generation decreased in the order T-Sol > T-Son > T-Pol > T-Ppt and the observed activity is correlated with their physical properties such as surface area and crystallinity. The hydrogen yield was highly enhanced by the addition of Pd metal as co-catalyst on the surface of TiO2 photocatalysts. Present experiments clearly demonstrate the importance of synthesis route to improve the photocatalytic activity of TiO2.  相似文献   

10.
In this paper, TiO2 nanotubes/Pt/C (TNT/Pt/C) catalysts for ethanol electro-oxidation were prepared by co-mixing method in solution. TEM and XRD showed that uniform anatase TiO2 nanotubes were about 100 nm in length and 8 nm in diameter and the TGA results indicated that the amount of H2O contained in TiO2 nanotubes was much more than that in anatase TiO2. The composite catalysts activities were measured by cyclic voltammetry (CV), chronoamperometry and CO stripping voltammetry at 25 °C in acidic solutions. The results demonstrated that the TNT can greatly enhance the catalytic activity of Pt for ethanol oxidation and increase the utilization rate of platinum. The CO stripping test showed that the TNT can shift the CO oxidation potential to lower direction than TiO2 does, which is helpful for ethanol oxidation.  相似文献   

11.
Fe3+ doped TiO2 photocatalysts were prepared by hydrothermal treatment for the photocatalytic water splitting to produce stoichiometric hydrogen and oxygen under visible light irradiation. It was found that hydrothermal treatment at 110 °C for 10 h was essential for the synthesis of highly stabilized Fe3+ doped TiO2 photocatalysts. The synthesized photocatalysts were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS) and BET surface area techniques. The doping of highly stabilized Fe3+ in the titania matrix leads to significant red shift of optical response towards visible light owing to the reduced band gap energy. Optimum amount of Fe3+ doped TiO2, 1.0 wt% Fe/TiO2, showed drastically improved hydrogen production performance of 12.5 μmol-H2/h in aqueous methanol and 1.8 μmol-H2/h in pure water, respectively. This Fe/TiO2 photocatalyst was stable for 36 h without significant deactivation in the water splitting reaction.  相似文献   

12.
Thin film Pt/TiO2 catalysts are evaluated in a polymer electrolyte electrochemical cell. Individual thin films of Pt and TiO2, and bilayers of them, were deposited directly on Nafion membranes by thermal evaporation with varying deposition order and thickness (Pt loadings of 3–6 μg cm−2). Structural and chemical characterization was performed by transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Oxygen reduction reaction (ORR) polarization plots show that the presence of a thin TiO2 layer between the platinum and the Nafion increases the performance compared to a Pt film deposited directly on Nafion. Based on the TEM analysis, we attribute this improvement to a better dispersion of Pt on TiO2 compared to on Nafion and in addition, substantial proton conduction through the thin TiO2 layer. It is also shown that deposition order and the film thickness affects the performance.  相似文献   

13.
Photoactive membranes coated with TiO2 and Pt/TiO2 nanostructured thin films were produced by one-step deposition of gas phase nanoparticles on glass fiber filters. Pt/TiO2 nanoparticles (0–1.5 wt.% Pt content) were produced by flame spray pyrolysis, starting from liquid solutions of the Ti and Pt precursors, and then expanded in a supersonic beam to be deposited on the filters. The nanostructured coatings were composed of crystalline nanoparticles (mainly anatase phase), without any need of post-deposition annealing. The so obtained photocatalytic membranes were tested in hydrogen production by photo-steam reforming of ethanol in an expressly set-up diffusive photoreactor. The reaction rate was found to increase with increasing the Pt content in the photoactive material, up to 1.5 wt.% Pt. The use of these membranes allowed a significant increase of the hydrogen production rate compared to that obtained with the same photoactive Pt/TiO2 films deposited on a quartz substrate.  相似文献   

14.
Cr- or Fe-ion-doped TiO2 thin films have been synthesized by radio-frequency magnetron sputtering and a sol–gel method to study hydrogen generation by photocatalytic water-splitting under visible light irradiation. The doping method, dopant concentration, charge transfer from metal dopants to TiO2, and type of dopants used for modification of TiO2 were investigated for their ability to enhance photocatalytic activity. UV–Visible spectra show that the metal-doped-TiO2 obtained by sputtering is much more efficient than that obtained by the sol–gel technique at inducing a red shift of the absorption edge in the visible light range. Low concentration metal ion doping must be done near the conducting indium tin oxide (ITO) – TiO2 interface to avoid the formation of recombination centers for photo-generated electron–hole pairs. H2 production rate (μmol/h) is higher for Fe-doped TiO2 (15.5 μmol/h) than for Cr-doped TiO2 (5.3 μmol/h) due to the ability of Fe ions to trap both electrons and holes, thus avoiding recombination, while Cr can only trap one type of charge carrier. A constant H2 generation rate is obtained for long periods of time by all the investigated TiO2 films because of the separate evolution of H2 and O2 gases, thus eliminating the back-reaction effect.  相似文献   

15.
Nitrogen/titanium dioxide (N/TiO2) visible light photocatalysts were prepared using the sol–gel method. The catalysts were characterized using transmission electron microscopy, reflective UV–visible spectroscopy, specific surface area measurements, and X-ray diffraction. The prepared catalysts were used to generate hydrogen gas through the water-splitting reaction under visible light (wavelengths greater than 400 nm). Various N/Ti addition ratios were tested, and the hydrogen generation rates were compared to determine the optimal ratio. The maximal hydrogen production rate (approximately 55 μmol h−1 g−1) was attained when the N/Ti ratio of N–TiO2 was 10. When PdO and Pt were loaded onto the N–TiO2 catalyst, the hydrogen generation rates increased to 544 and 772 μmol h−1 g−1, respectively. The highest hydrogen production rate (2460 μmol h−1 g−1) was obtained when bimetallic 0.05 wt% PdO-0.10 wt% Pt/N–TiO2 was used. After three times use the hydrogen yield of the catalyst was maintained as 83%. A possible mechanism of water splitting catalyzed by this visible light photocatalyst is proposed.  相似文献   

16.
La doped Cd2TaGaO6 photocatalyst was successfully synthesized for the first time by a sol–gel method. Several metal oxides and noble metals involving NiO, CuO, Cr2O3, Pt, and Ru were respectively loaded onto La doped Cd2TaGaO6 as cocatalyst. NiO and noble metal co-loaded photocatalyst was also prepared. The obtained products were characterized by X-ray diffraction (XRD), ultraviolet–visible spectra (UV–Vis), scanning electron microscope (SEM), etc. The results showed that most of cocatalyst loaded photocatalysts exhibited much higher activities for hydrogen evolution from ethanol aqueous solution than single La doped Cd2TaGaO6. Compared with sole NiO or noble metal loaded photocatalyst, NiO and noble metal co-loaded La doped Cd2TaGaO6 showed superior activity. It is revealed that the loaded NiO and noble metal can interact with each other and cooperate on improving the photocatalytic activity. The effect of the cocatalyst loading amount on photocatalytic properties was discussed. Especially, 0.5 wt% NiO and 0.5 wt% Pt co-loaded La doped Cd2TaGaO6 displayed the highest hydrogen production rate of 2.93 mmol h−1, which was ca. 33 times that of single La doped Cd2TaGaO6.  相似文献   

17.
Photocatalysts CuS/TiO2 for hydrogen production were synthesized by hydrothermal method at high temperature and characterized by XRD, UV–visible DRS, XPS, EDX, SEM and TEM. When TiO2 was loaded with CuS, it showed photocatalytic activities for water decomposition to hydrogen in methanol aqueous solution under 500 W Xe lamp. Among the photocatalysts with various compositions, the one with 1 wt% CuS-loaded TiO2 showed the maximum photocatalytic activity for water splitting, which indicated CuS could improve the separation ratio of photoexcited electrons and holes. What's more, the amounts of the produced hydrogen was about 570 μmol h−1, which had exceeded pure titania (P25) 32 times. In the present paper, it is proven that CuS can act as an effective co-catalyst to enhance the photocatalytic H2 production activity of TiO2.  相似文献   

18.
An efficient visible-light active photocatalyst of multilayer-Eosin Y-sensitized TiO2 is prepared through linkage of Fe3+ between not only TiO2 and Eosin Y but also different Eosin Y molecules to form three-dimensional polymeric dye structure. The multilayer-dye-sensitized photocatalyst is found to have high light harvesting efficiency and photocatalytic activity for hydrogen evolution under visible light irradiation (λ > 420 nm). On the optimum conditions (1:1 initial molar ratio of Eosin Y to Fe(NO3)3, initial 10 × 10−3 M Eosin Y, and 1.0 wt% Pt deposited by in situ photoreduction), its maximal apparent quantum yield for hydrogen evolution is 19.1% from aqueous triethanolamine solution (TEOA aq). The present study highlights linking between dye molecules via metal ions as a general way to develop efficient visible-light photocatalyst.  相似文献   

19.
In this study, platinized mixed oxides (TiO2–Nb2O5) were tested on photocatalytic hydrogen production from a glycerol solution under UV light. Different samples with different Ti:Nb ratios were prepared by using a simple method that simultaneously combined a physical mixture and a platinum photochemical reduction. This method led to improved physicochemical properties such as low band gap, better Pt nanoparticle distribution on the surface, and the formation of different Pt species. Niobia content was also found to be an important factor in determining the overall efficiency of the Pt–TiO2–Nb2O5 photocatalyst in the glycerol reforming reaction. The photocatalytic results showed that Pt on TiO2–Nb2O5 enhanced hydrogen production from the aqueous glycerol solution at a 5 wt% initial glycerol concentration. The influence of different operating conditions such as the catalyst dosage and initial glycerol concentration was also evaluated. The results indicated that the best hydrogen and methane production was equal to 6657 μmol/L and 194 μmol/L, respectively after 4 h of UV radiation using Pt/Ti:Nb (1:2) sample and with 3 g/L of catalyst dosage. Moreover, the role of water in photocatalytic hydrogen production was studied through photocatalytic activity tests in the presence of D2O. The obtained results confirmed the role of water molecules on the photocatalytic production of hydrogen in an aqueous glycerol solution.  相似文献   

20.
A novel photocatalyst was designed from the inspiration of natural forest's high efficient on light harvesting and energy conversion. This novel “forest-like” photocatalyst was successfully synthesized by a facile continuously-conducted three steps methods: electrospinning TiO2 nanofiber acts as the trunks, hydrothermal growth ZnO nanorods on the surface of TiO2 nanofiber acts as the branches, while photodeposition of Cu nanoparticles on the surface of TiO2 nanofiber and ZnO nanorods act as the leaves. This novel photocatalyst demonstrated higher photocatalytic hydrogen generation rate than most of semiconductor catalysts and many newly developed catalysts such as Pt/TiO2 catalyst and artificial leaves Pt/N–TiO2 catalyst in a water/methanol sacrificial reagent system under the light irradiation as a result of its enhanced light absorption ability, enlarged specific surface area promoting mass transfer and providing more reaction sites and its potential on anti-recombination of electrons and holes. Meanwhile, it is interesting to note that the photocatalytic hydrogen generation activity has a liner relationship with the hierarchy of materials, which means higher hierarchy materials display higher photocatalytic hydrogen generation activity. It is reasonable to believe that this natural mimic photocatalyst without noble metals will benefit the energy generation and novel materials development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号