首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A self-breathing micro-direct methanol fuel cell (μDMFC) with active area of 0.64 cm2 has been developed for powering portable applications. A cathode perforated current collector with parallel flow fields is presented in order to improve the cell performance. Compared with the conventional cathode self-breathing structure, the improved one can enhance oxygen transport and reduce water flooding utilizing multiphysics simulations. The stainless steel plates with the thickness of 0.3 mm as current collectors with parallel flow fields have been machined by thermally micro-stamping. For the cathode self-breathing openings, the perforated current collector has been realized using laser drilling. A 500 nm-thick titanium nitride (TiN) layer is deposited onto the surface of current collectors by magnetron sputtering ion plating (MSIP) technology to cover the cracks and prevent corrosion. Peak power density of the μDMFC reaches 27.1 mW/cm2 at room temperature with 1.0 M methanol solutions of 1 ml/min. The results presented in this paper might be helpful for the development of micro power sources applied in future portable electronic devices.  相似文献   

2.
As a promising candidate for conventional micro-power sources, the micro-direct methanol fuel cell (μDMFC) is currently attracting increased attention due to its various advantages and prospective suitability for portable applications. This paper reports the design, fabrication and analysis of a high-performance μDMFC with two metal current collectors. Employing micro-stamping technology, the current collectors are fabricated on 300-μm-thick stainless steel plates. The flow fields for both cathode and anode are uniform in shape and size. Two sheets of stainless steel mesh are added between the membrane electrode assembly (MEA) and current collectors in order to improve cell performance. To avoid electrochemical corrosion, titanium nitride (TiN) layers with thickness of 500 nm are deposited onto the surface of current collectors and stainless steel mesh. The performance of this metallic μDMFC is thoroughly studied by both simulation and experimental methods. The results show that all the parameters investigated, including current collector material, stainless steel mesh, anode feeding mode, methanol concentration, anode flow rate, and operating temperature have significant effects on cell performance. Moreover, the results show that under optimal operating conditions, the metallic μDMFC exhibits promising performance, yielding a maximum power density of 65.66 mW cm−2 at 40 °C and 115.0 mW cm−2 at 80 °C.  相似文献   

3.
An air-breathing direct methanol fuel cell with a novel cathode shutter current collector is fabricated to develop the power sources for consumer electronic devices. Compared with the conventional circular cathode current collector, the shutter one improves the oxygen consumption and mass transport. The anode and cathode current collectors are made of stainless steel using thermal stamping die process. Moreover, an encapsulation method using the tailor-made clamps is designed to assemble the current collectors and MEA for distributing the stress of the edges and inside uniformly. It is observed that the maximum power density of the air-breathing DMFC operating with 1 M methanol solution achieves 19.7 mW/cm2 at room temperature. Based on the individual DMFCs, the air-breathing stack consisting of 36 DMFC units is achieved and applied to power a notebook computer.  相似文献   

4.
Direct methanol fuel cell (DMFC), with benefits such as high energy efficiency, quick start capability and instantaneous refueling, is a promising power source to meet the ever-increasing power demand for portable electronic products. In this paper, a novel CO2-driven fuel-feed device was produced and equipped in a passive 8-cell DMFC twin-stack for long-term operation. It was shown that this fuel-feed device was capable of supplying methanol solution continuously in response to the change in discharging current of the stack. Stainless steel sheet was photochemically etched as current collectors based on MEMS techniques. Series interconnections between two neighbor cells were realized in banded configuration which avoided the external connection. TiN-plated mesh was placed between current collector and membrane electrode assembly (MEA), which was used to lessen the internal resistance of the stack. A peak power density of 16.9 mW cm−2 was achieved with 4 M methanol at ambient temperature and passive operation. The stack equipped with the fuel feed device successfully powered a sensor node for 39 h with the consumption of 80 ml of 4 M methanol.  相似文献   

5.
Corrosion resistance performance of SS316L treated by passivation solution was investigated in a simulated environment of the passive direct methanol fuel cell (DMFC). Electrochemical impedance spectroscopic (EIS) test showed that polarization resistance of untreated and treated SS316L were 1191 Ω cm2 and 9335 Ω cm2, respectively. The above result agreed with the Tafel slope analysis of potentiodynamic polarization curves. Comparing the untreated and treated SS316L in the simulated environment of DMFC anode working conditions, it was observed that the corrosion current density of treated SS316L as estimated by 4000 s potentiostatic test reduced from 38.7 μA cm−2 to 0.297 μA cm−2, meanwhile, the current densities of untreated and treated SS316L in cathode working conditions were 3.87 μA cm−2 and 0.223 μA cm−2, respectively. It indicated that the treated SS316L should be suitable in both anode and cathode environment of passive DMFCs. The treated SS316L bipolar plates have been assembled in a passive single fuel cell. A peak power density of 1.18 mW cm−2 was achieved with 1 M methanol at ambient temperature.  相似文献   

6.
According to the conventional MEA test, methanol and water crossover are the main factors to determine performance of a passive DMFC. Thus, to ensure the high cell performance of a passive DMFC using high concentration methanol of 50–95 vol%, the MEA in this study introduces the barrier layer to limit the crossover of high concentration methanol, a hydrophobic layer to reduce water crossover, and a hydrophilic layer to enhance the water recovery from the cathode to the anode. The functional layers of the MEA have the effect of improving the performance of the passive DMFC by decreasing the methanol and water crossover. In spite of the operation with 95 vol% methanol, the MEA with multi-layer electrodes for high concentration methanol DMFCs shows a maximum power density of 35.1 mW cm−2 and maintains a high power density of 30 mW cm−2 (0.405 V) under constant current operation.  相似文献   

7.
In this paper, the effects of current collector on passive direct methanol fuel cell's (passive DMFC) performance and removing CO2 gas is studied. For this purpose, a single cell with two arrangements of current collector in anode and cathode side is considered. In first arrangement, non-uniform parallel channels with 53.76% open ratio is used in the anode side and a perforated flow field with 34.5% open ratio is applied in the cathode side. In second arrangement, uniform parallel channels with 42.28% open ratio has been used in both anode and cathode sides. At the first arrangement, a maximum power of 20 mW cm−2 in 4 M methanol concentrations and in the second arrangement a maximum power of 17.7 mW cm−2 in 5 M methanol concentrations has been obtained. Furthermore, it is shown that using the current collector with non-uniform parallel channels is more effective in removing CO2 gas than other parallel channels.  相似文献   

8.
To realize lightweight design of the fuel cell system is a critical issue before it is put into practical use. The printed-circuit-board (PCB) technology can be potentially used for production of current collectors or flow distributors. This study develops prototypes of a single passive air-breathing direct methanol fuel cell (DMFC) and also an 8-cell mono-polar DMFC stack based on PCB current collectors. The effects of diverse structural and operational factors on the cell performance are explored. Results show that the methanol concentration of 6 M promotes a higher cell performance with a peak power density of 18.3 mW cm−2. The combination of current collectors using a relatively higher anode open ratio and inversely a lower cathode open ratio helps enhance the cell performance. Dynamic tests are also conducted to reveal transient behaviors and its dependence on the operating conditions. To validate the real working status of the DMFC stack, it is coupled with an LED lightening system. The performance of this hybrid system is also reported in this study.  相似文献   

9.
Various sulfonated poly (2,6-dimethyl-1,4-phenylene oxide) (SPPO)-polybenzimidazole (PBI) blend membranes were prepared and investigated as proton exchange membranes (PEMs) for direct methanol fuel cell (DMFC) applications. With increasing PBI content water swelling, ion exchange capacity, proton conductivity and methanol permeability of SPPO-PBI membranes were found to be decreased due to acid-base interactions between sulfonate and the amine groups of the blended components. Among various SPPO-PBI blend membranes, 80:20 wt% was found as the optimum composition, which showed the highest membrane selectivity parameter. Direct methanol-air single fuel cell tests revealed a higher cell efficiency of 11.6% for SPPO80-PBI20 than 10.9% for Nafion®117 at 5 M methanol feed, and also a higher power density of 57.6 mW.cm−2 compared to 39.4 mW.cm−2 for Nafion®117. Transport properties as well as DMFC performance results of SPPO-PBI blend PEMs converge to indicate their potential for DMFC applications.  相似文献   

10.
The present work consists of a tubular-shaped direct methanol fuel cell (DMFC) that is operated completely passively with methanol solution stored in a central fuel reservoir. The benefit of a tubular-shaped DMFC over a planar-shaped DMFC is the higher instantaneous volumetric power energy density (power/volume) associated with the larger active area provided by the tubular geometry. Membrane electrode assemblies (MEAs) with identical compositions were installed in both tubular and planar-shaped, passive DMFCs and tested with 1, 2, and 3 M methanol solutions at room temperature. The peak power density for the tubular DMFC was 19.0 mW cm−2 and 24.5 mW cm−2 while the peak power density for the planar DMFC was 20.0 mW cm−2 and 23.0 mW cm−2 with Nafion® 212 and 115 MEAs, respectively. Even though the performance of the fuel cell improved with each increase in methanol concentration, the fuel and energy efficiencies decreased for both the tubular and planar geometries due to increased methanol crossover. The tubular DMFC experienced higher methanol crossover potentially due to a higher static fluid pressure in the anode fuel reservoir (AFR) caused by the vertical orientation of the tubular fuel reservoir. The performance of the tubular DMFC in this work represents an 870% improvement in power density from the previous best, passive, tubular DMFC found in the literature.  相似文献   

11.
To achieve the maximum performance from a Direct Methanol Fuel Cell (DMFC), one must not only investigate the materials and configuration of the MEA layers, but also consider alternative cell geometries that produce a higher instantaneous power while occupying the same cell volume. In this work, a two-dimensional, two-phase, non-isothermal model was developed to investigate the steady-state performance and design characteristics of a tubular-shaped, passive DMFC. Under certain geometric conditions, it was found that a tubular DMFC can produce a higher instantaneous Volumetric Power Density than a planar DMFC. Increasing the ambient temperature from 20 to 40 °C increases the peak power density produced by the fuel cell by 11.3 mW cm−2 with 1 M, 16.3 mW cm−2 with 2 M, but by only 8.4 mW cm−2 with 3 M methanol. The poor performance with 3 M methanol at a higher ambient temperature is caused by increased methanol crossover and significant oxygen depletion along the Cathode Transport Layer (CTL). For a 5 cm long tubular DMFC to maintain sufficient Oxygen transport, the thickness of the CTL must be greater than 1 mm for 1 M operation, greater than 5 mm for 2 M operation, and greater than 10 mm for 3 M or higher operation.  相似文献   

12.
In the present study, composite polyelectrolyte membranes were prepared from sulfonated polystyrene and fullerene. The additive effect of the fullerene on the membrane properties – electric resistance, mechanical strength, oxidation resistance, and methanol permeability – were measured. The addition of fullerene improved the oxidation resistance, and reduced the methanol crossover. The mechanical strength of the fullerene-composite membrane, on the other hand, was not improved. The direct methanol fuel cell (DMFC) based on a 1.4 wt% fullerene-composite membrane showed the highest power density of 47 mW cm−2 at the current density of 200 mA cm−2 (this value is 60% of the Nafion-based DMFC). The transmission electron microscopy (TEM) observations suggest that the improved dispersity of the fullerene and the reduced number of micropores in the membranes would improve its performance in the fuel cell.  相似文献   

13.
A novel approach has been proposed to improve the water management of a passive direct methanol fuel cell (DMFC) fed with neat methanol without increasing its volume or weight. By adopting perforated covers with different open ratios at the cathode, the water management has been significantly improved in a DMFC fed with neat methanol. An optimized cathode open ratio could ensure both the sufficient supply of oxygen and low water loss. While changing the open ratio of anode vaporizer can adjust the methanol crossover rate in a DMFC. Furthermore, the gas mixing layer, added between the anode vaporizer and the anode current collector to increase the mass transfer resistance, can improve the cell performance, decrease the methanol crossover, and increase the fuel efficiency. For the case of a DMFC fed with neat methanol, an anode vaporizer with the open ratio of 12% and a cathode open ratio of 20% produced the highest peak power density, 22.7 mW cm−2, and high fuel efficiency, 70.1%, at room temperature of 25 ± 1 °C and ambient humidity of 25-50%.  相似文献   

14.
A new single passive direct methanol fuel cell (DMFC) supplied with pure methanol is designed, assembled and tested using a pervaporation membrane (PM) to control the methanol transport. The effect of the PM size on the fuel cell performances and the constant current discharge of the fuel cell with one-fueling are studied. The results show that the fuel cell with PM 9 cm2 can yield a maximum power density of about 21 mW cm−2, and a stable performances at a discharge current of 100 mA can last about 45 h. Compared with DMFC supplied with 3 M methanol solution, the energy density provided by this new DMFC has increased about 6 times.  相似文献   

15.
A passive silicon microfabricated direct methanol fuel cell employing a polymer anion exchange membrane has been identified as a promising integrable power supply for portable devices in the MEMS field. In this work the fabrication steps of the different components: silicon current collectors and membrane-electrode assembly (MEA), as well as the mounting approach and performance evaluation for the whole passive alkaline micro air-breathing direct methanol fuel cell (μADMFC) are shown. This system, with a small active area of 0.25 cm2, was tested near of the real application conditions with totally passive fueling and at room temperature. Different MEA configurations and methanol and KOH concentrations were compared. Best performance was observed for the MEA with a previously sprayed catalytic layer on carbon cloth instead of the MEAs with the catalytic layer deposited directly onto the alkaline membrane. A maximum power density of 2.2 mW cm−2 was achieved for 15 μL of 1 M methanol + 4 M KOH fuel solution.  相似文献   

16.
We report here the performance of a metal-based integrated composite membrane electrode assembly (IC-MEA) in direct methanol fuel cell (DMFC). The IC-MEA integrates the multi-functions of a conventional MEA, gas diffusion layer (GDL) and current collector. It was fabricated by impregnating Nafion electrolyte into a sandwiched structure containing expanding-Polytetrafluoroethylene (e-PTFE) and porous titanium sheets and subsequently coating with catalyst layer and microporous layer (MPL). While operating with air and 2 M methanol under ambient pressure, the IC-MEA in DMFC can yield a maximum power density of 19 mW cm−2 at 26 °C, higher than a in-house made Nafion 115 MEA under the same working conditions. The IC-MEAs has been successfully applied to planar multi-cell stacks.  相似文献   

17.
《Journal of power sources》2005,144(1):141-145
A micro direct methanol fuel cell (μDMFC) with active area of 1.625 cm2 has been developed for high power portable applications and its electrochemical characterization carried out in this study. The fragility of the silicon wafer makes it difficult to compress the cell for good sealing and hence to reduce contact resistance in the Si-based μDMFC. We have instead used very thin stainless steel plates as bipolar plates with the flow field machined by photochemical etching technology. For both anode and cathode flow fields, widths of both the channel and rib were 750 μm, with a channel depth of 500 μm. A gold layer was deposited on the stainless steel plate to prevent corrosion. This study used an advanced MEA developed in-house featuring a modified anode backing structure with a compact microporous layer. Maximum power density of the micro DMFC reached 62.5 mW cm−2 at 40 °C, and 100 mW cm−2 at 60 °C at atmospheric pressure, which almost doubled the performance of our previous Si-based μDMFC.  相似文献   

18.
The direct methanol fuel cell (DMFC) is suitable for portable applications. Therefore, a light weight and small size is desirable. The main objective of this paper is to design and fabricate a light weight current collector for DMFC usage. The light weight current collector mainly consists of a substrate with two thin film metal layers. The substrate of the current collector is an FR4 epoxy plate. The thin film metal layers are accomplished by the thermo coater technique to coat metal powders onto the substrate surfaces. The developed light weight current collectors are further assembled to a single cell DMFC test fixture to measure the cell performance. The results show that the proposed current collectors could even be applied to DMFCs because they are light, thin and low cost and have potential for mass production.  相似文献   

19.
PVDF supported silica-immobilized phosphotungstic acid membrane (Si-PWA/PVDF) was synthesized by impregnation of silica immobilized phosphotungstic acid particles in porous PVDF film. Pore size distribution as well as stability of membrane in oxidative environment was determined using Fenton's reagent test. Stability of membrane against leaching of PWA which provides ion exchanging capacity was also determined and found to be adequate. Properties which affect performance of membrane in DMFC like water uptake, methanol cross-over and proton conductivity were measured. Water uptake of the membrane increased from 30.3% to 37.9% as the temperature was increased from 25 °C to 80 °C. The proton conductivity of the membrane increased from 4.3 mS cm−1 to 20 mS cm−1 with increase in the temperature from 25 °C to 80 °C. Methanol uptake of the Si-PWA/PVDF membrane was low compared to Nafion membrane and changed by very small amount with increase in temperature. Effect of operating parameters on performance of direct methanol fuel cell (DMFC) with the synthesized Si-PWA/PVDF was determined. DMFC performance improved on increasing temperature. As the temperature was increased from 25 °C to 60 °C, open circuit voltage (OCV) increased from 0.685 V at 0.815 V and the peak power density increased from 21.4 mW cm−2 to 44.0 mW cm−2. Maximum peak power density was obtained with 1 M methanol concentration and 60% relative humidity. Peak power density decreased with further increase in both methanol concentration and relative humidity.  相似文献   

20.
Due to the increasing demand for electricity, clean, renewable energy resources must be developed. Thus, the objective of the present study was to develop a passive direct methanol fuel cell (DMFC) for portable electronic devices. The power output of six dual DMFCs connected in series with an active area of 4 cm2 was approximately 600 mW, and the power density of the DMFCs was 25 mW cm−2. The DMFCs were evaluated as a power source for mobile phone chargers and media players. The results indicated that the open circuit voltage of the DMFC was between 6.0 V and 6.5 V, and the voltage under operating conditions was 4.0 V. The fuel cell was tested on a variety of cell phone chargers, media players and PDAs. The cost of energy consumption by the proposed DMFC was estimated to be USD 20 W−1, and the cost of methanol is USD 4 kW h. Alternatively, the local conventional electricity tariff is USD 2 kW h. However, for the large-scale production of electronic devices, the cost of methanol will be significantly lower. Moreover, the electricity tariff is expected to increase due to the constraints of fossil fuel resources and pollution. As a result, DMFCs will become competitive with conventional power sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号