首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A complete stand-alone electrolyser system has been constructed as a transportable unit for demonstration of a sustainable energy facility based on hydrogen and a renewable energy source. The stand-alone unit is designed to support a polymer electrolyte membrane (PEM) stack operating at up to ∼4 kW input power with a stack efficiency of about 80% based on HHV of hydrogen. It is self-pressurizing and intended for operation initially at a differential pressure of less than 6 bar across the membrane electrode assembly with the hydrogen generation side being at a higher pressure. With a slightly smaller stack, the system has been operated at an off-site facility where it was directly coupled to a 2.4 kW photovoltaic (PV) solar array. Because of its potential use in remote areas, the balance-of-plant operates entirely on 12 V DC power for all monitoring, control and safety requirements. It utilises a separate high-current supply as the main electrolyser input, typically 30–40 V at 100 A from a renewable source such as solar PV or wind. The system has multiple levels of built-in operator and stack safety redundancy. Control and safety systems monitor all flows, levels and temperatures of significance. All fault conditions are failsafe and are duplicated, triggering latching relays which shut the system down. Process indicators monitor several key variables and allow operating limits to be easily adjusted in response to experience of system performance gained in the field.  相似文献   

2.
One of the most challenging issues in the domain of renewable energy is the instability of produced power. To put it another way, renewable resources such as solar energy cannot provide continuous energy supply because they rely on natural phenomena that vary randomly. That said, to cover the potential lack of energy that may occur, hybrid renewable energy system can be adopted. In other terms, instead of using single renewable energy source, two different sources can be utilized in order to optimize the output power all over the year. Furthermore, complementary energy system is needed along with renewable sources, to store energy and insure the supply during shortage period. With this in mind, a Green-Green energy system can be constructed by using green storage system such as Fuel Cell to be coupled with the renewable sources. In the light of green-green energy concept, the present paper examines a triple wind-solar-fuel cell combination in the aim of overcoming the energy shortage that occurs during several months of the year. A case study on the region of Dahr Al-Baidar in Lebanon is conducted to present the advantage of the proposed system. Results show that combining wind energy system with thermal solar system allows overcoming the low power produced by solar thermal system especially in winter. For illustration 16 kW are produced by wind turbine during the month of January, by contrast the thermal solar system provides 2 kW during the same period. Nevertheless, in June thermal solar offers 17 kW and wind turbine produces 11 kW.  相似文献   

3.
In the wake of rising cost of oil and fears of its exhaustion coupled with increased pollution, the governments world-wide are deliberating and making huge strides to promote renewable energy sources such as solar–photovoltaic (solar–PV) and wind energy. Integration of diesel systems with hybrid wind–PV systems is pursued widely to reduce dependence on fossil-fuel produced energy and to reduce the release of carbon gases that cause global climate change. Literature indicates that commercial/residential buildings in the Kingdom of Saudi Arabia (KSA) consume an estimated 10–40% of the total electric energy generated. The study reviews research work carried out world-wide on wind farms and solar parks. The work also analyzes wind speed and solar radiation data of East-Coast (Dhahran), KSA, to assess the technical and economic potential of wind farm and solar PV park (hybrid wind–PV–diesel power systems) to meet the load requirements of a typical commercial building (with annual electrical energy demand of 620,000 kWh). The monthly average wind speeds range from 3.3 to 5.6 m/s. The monthly average daily solar global radiation ranges from 3.61 to 7.96 kWh/m2. The hybrid systems simulated consist of different combinations of 100 kW wind machines, PV panels, supplemented by diesel generators. NREL (and HOMER Energy's) HOMER software has been used to perform the techno-economic study. The simulation results indicate that for a hybrid system comprising of 100 kW wind capacity (37 m hub-height) and 40 kW of PV capacity together with 175 kW diesel system, the renewable energy fraction (with 0% annual capacity shortage) is 36% (24% wind + 12% PV). The cost of generating energy (COE, $/kWh) from this hybrid wind–PV–diesel system has been found to be 0.154 $/kWh (assuming diesel fuel price of 0.1$/L). The study exhibits that for a given hybrid configuration, the number of operational hours of diesel generators decreases with increase in wind farm and PV capacity. Attention has also been focused on wind/PV penetration, un-met load, excess electricity generation, percentage fuel savings and reduction in carbon emissions (relative to diesel-only situation) of different hybrid systems, cost break-down of wind–PV–diesel systems, COE of different hybrid systems, etc.  相似文献   

4.
The share of renewable energy sources in Algeria primary energy supply is relatively low compared with European countries, though the trend of development is positive. One of the main strategic priorities of NEAL (New Energy Algeria), which is Algeria's renewable energy agency (government, Sonelgaz and Sonatrach), is striving to achieve a share of 10–12% renewable energy sources in primary energy supply by 2010.This article presents techno-economic assessment for off-grid hybrid generation systems of a site in south western Algeria. The HOMER model is used to evaluate the energy production, life-cycle costs and greenhouse gas emissions reduction for this study. In the present scenario, for wind speed less than 5.0 m/s the existing diesel power plant is the only feasible solution over the range of fuel prices used in the simulation. The wind diesel hybrid system becomes feasible at a wind speed of 5.48 m/s or more and a fuel price of 0.162$/L or more. If the carbon tax is taken into consideration and subsidy is abolished, then it is expected that the hybrid system will become feasible. The maximum annual capacity shortage did not have any effect on the cost of energy, which may be accounted for by larger sizes of wind machines and diesel generators.  相似文献   

5.
Solar and wind energies are likely to play an important role in the future energy generation in Oman. This paper utilizes average daily global solar radiation and sunshine duration data of 25 locations in Oman to study the economic prospects of solar energy. The study considers a solar PV power plant of 5-MW at each of the 25 locations. The global solar radiation varies between slightly greater than 4 kWh/m2/day at Sur to about 6 kWh/m2/day at Marmul while the average value in the 25 locations is more than 5 kWh/m2/day. The results show that the renewable energy produced each year from the PV power plant varies between 9000 MWh at Marmul and 6200 MWh at Sur while the mean value is 7700 MWh of all the 25 locations. The capacity factor of PV plant varies between 20% and 14% and the cost of electricity varies between 210 US$/MWh and 304 US$/MWh for the best location to the least attractive location, respectively. The study has also found that the PV energy at the best location is competitive with diesel generation without including the externality costs of diesel. Renewable energy support policies that can be implemented in Oman are also discussed.  相似文献   

6.
Solar and wind are the most promising renewable energy resources. But their unpredictable and varying nature prevents them from being used as the sole resource for power generation. This paper presents a model of wind and solar thermal hybrid power plant with a spring storage system which is expected to play an efficient role in combating with the drawbacks related to renewable power generation. In the proposed scheme, wind energy is harnessed by a hybrid vertical axis wind turbine, solar energy is utilized by a Stirling engine, and the surplus energy is stored in a winding spring. The paper discusses the working methodologies and analyses the performance of such 2.6 kW hybrid power plant model. It has been observed that the plant is capable of consistently generating 50% of its rated capacity irrespective of limitations in solar and wind resources.  相似文献   

7.
The main objective of the present study is twofold: (i) to analyze thermal loads of the geothermally and passively heated solar greenhouses; and (ii) to investigate wind energy utilization in greenhouse heating which is modeled as a hybrid solar assisted geothermal heat pump and a small wind turbine system which is separately installed in the Solar Energy Institute of Ege University, Izmir, Turkey. The study shows 3.13% of the total yearly electricity energy consumption of the modeled system (3568 kWh) or 12.53% of the total yearly electricity energy consumptions of secondary water pumping, brine pumping, and fan coil (892 kWh) can be met by using small wind turbine system (SWTS) theoretically. According to this result, modeled passive solar pre heating technique and combined with geothermal heat pump system (GHPS) and SWTS can be economically preferable to the conventional space heating/cooling systems used in agricultural and residential building heating applications if these buildings are installed in a region, which has a good wind resource.  相似文献   

8.
The utilization of energy from renewable sources, such as wind, is becoming increasingly attractive and is being widely used for the substitution of oil-produced energy, and eventually to minimize atmospheric degradation. Literature shows that commercial/residential buildings in Saudi Arabia consume an estimated 10–40% of the total electric energy generated. In the present study, hourly mean wind-speed data for the period 1986–1997 recorded at the solar radiation and meteorological monitoring station, Dhahran (26° 32′ N, 50° 13′ E), Saudi Arabia, have been analyzed to investigate/examine the role of hybrid (wind+diesel) energy conversion systems in meeting the load requirements of a typical commercial building (with annual electrical energy demand of 620,000 kWh). The monthly average wind speeds for Dhahran range from 4.1 to 6.4 m/s. The hybrid systems considered in the present analysis consist of different combinations of the commercial 10 kW wind energy conversion systems (WECS), supplemented with battery storage unit and diesel back-up. The study shows that with thirty 10 kW WECS and 3 days of battery storage, the diesel back-up system has to provide 19% of the load demand. However, in the absence of battery storage, about 40% of the load needs to be provided by the diesel system.  相似文献   

9.
An autonomous wind/hydrogen energy demonstration system located at the island of Utsira in Norway was officially launched by Norsk Hydro (now StatoilHydro) and Enercon in July 2004. The main components in the system installed are a wind turbine (600 kW), water electrolyzer (10 Nm3/h), hydrogen gas storage (2400 Nm3, 200 bar), hydrogen engine (55 kW), and a PEM fuel cell (10 kW). The system gives 2–3 days of full energy autonomy for 10 households on the island, and is the first of its kind in the world. A significant amount of operational experience and data has been collected over the past 4 years. The main objective with this study was to evaluate the operation of the Utsira plant using a set of updated hydrogen energy system modeling tools (HYDROGEMS). Operational data (10-min data) was used to calibrate the model parameters and fine-tune the set-up of a system simulation. The hourly operation of the plant was simulated for a representative month (March 2007), using only measured wind speed (m/s) and average power demand (kW) as the input variables, and the results compared well to measured data. The operation for a specific year (2005) was also simulated, and the performance of several alternative system designs was evaluated. A thorough discussion on issues related to the design and operation of wind/hydrogen energy systems is also provided, including specific recommendations for improvements to the Utsira plant. This paper shows how important it is to improve the hydrogen system efficiency in order to achieve a fully (100%) autonomous wind/hydrogen power system.  相似文献   

10.
The technical and economic feasibility study of an innovative wind–solar hybrid renewable energy generation system with rainwater collection feature for electrical energy generation is presented in this paper. The power generated would supply part of the energy requirements of the high-rise building where the system is installed. The system integrates and optimizes several green technologies; including urban wind turbine, solar cell module and rain water collector. The design was conceptualized based on the experiences acquired during the development and testing of a suitable wind turbine for Malaysian applications. It is compact and can be built on top of high-rise buildings in order to provide on-site renewable power to the building. It overcomes the inferior aspect on the low wind speed by channeling and increasing the speed of the high altitude free-stream wind through the power-augmentation-guide-vane (PAGV) before it enters the wind turbine at the center portion. The shape or appearance of the PAGV that surrounds the wind turbine can be blended into the building architecture without negative visual impact (becomes part of the building). The design improves the starting behavior of wind turbines. It is also safer to people around and reduces noise pollution. The techno-economic analysis is carried out by applying the life cycle cost (LCC) method. The LCC method takes into consideration the complete range of costs and makes cash flows time-equivalent. The evaluations show that for a system with the PAGV (30 m diameter and 14 m high) and an H-rotor vertical axis wind turbine (17 m diameter and 9 m high) mounted on the top of a 220 m high building, the estimated annual energy savings is 195.2 MW h/year.  相似文献   

11.
Depleting oil and gas reserves, combined with growing concerns of atmospheric pollution/degradation, have made the search for energy from renewable sources of energy, such as solar and wind, inevitable. Literature indicates that commercial/residential buildings in Saudi Arabia consume an estimated 10–40% of the total electric energy generated. In the present study, hourly mean wind-speed and solar radiation data for the period 1986–1997 recorded at the solar radiation and meteorological monitoring station, Dhahran (26°32′ N, 50°13′ E), Saudi Arabia, have been analyzed to investigate the potential of utilizing hybrid (wind+solar) energy conversion systems to meet the load requirements of a typical commercial building (with annual electrical energy demand of 620 000 kWh). The monthly average wind speeds for Dhahran range from 4.1 to 6.4 m/s. The monthly average daily values of solar radiation for Dhahran range from 3.6 kWh/m2 to 7.96 kWh/m2. The hybrid systems considered in the present analysis consist of different combinations of commercial 10 kW wind energy conversion systems (WECS), photovoltaic (PV) panels supplemented with battery storage unit and diesel back-up. The study shows that with 30 10-kW WECS together with 150 m2 PV, and 3 days of battery storage, the diesel back-up system has to provide 17% of the load demand. However, in the absence of battery storage, about 38% of the load needs to be provided by the diesel system.  相似文献   

12.
Three renewable energy technologies (RETs) were analyzed for their feasibility for a small off-grid research facility dependent on diesel for power and propane for heat. Presently, the electrical load for this facility is 115 kW but a demand side management (DSM) energy audit revealed that 15–20% reduction was possible. Downsizing RETs and diesel engines by 15 kW to 100 kW reduces capital costs by $27 000 for biomass, $49 500 for wind and $136 500 for solar.The RET Screen International 4.0® model compared the economical and environmental costs of generating 100 kW of electricity for three RETs compared to the current diesel engine (0 cost) and a replacement ($160/kW) diesel equipment. At all costs from $0.80 to $2.00/l, biomass combined heat and power (CHP) was the most competitive. At $0.80 per liter, biomass’ payback period was 4.1 years with a capital cost of $1800/kW compared to wind's 6.1 years due to its higher initial cost of $3300/kW and solar's 13.5 years due to its high initial cost of $9100/kW. A biomass system would reduce annual energy costs by $63 729 per year, and mitigate GHG emissions by over 98% to 10 t CO2 from 507 t CO2. Diesel price increases to $1.20 or $2.00/l will decrease the payback period in years dramatically to 1.8 and 0.9 for CHP, 3.6 and 1.8 for wind, and 6.7 and 3.2 years for solar, respectively.  相似文献   

13.
A numerical method was developed for optimising solar–hydrogen energy system to supply renewable energy for typical household connected with the grid. The considered case study involved household located in Diyala Governorate, Iraq. The solar–hydrogen energy system was designed to meet the desired electrical load and increase the renewable energy fraction using optimum fuel cell capacity. The simulation process was conducted by MATLAB based on the experimental data for electrical load, solar radiation and ambient temperature at a 1-min time-step resolution. Results demonstrated that the optimum fuel cell capacity was approximately 2.25 kW at 1.8 kW photovoltaic power system based on the average of the daily energy consumption of 6.8 kWh. The yearly renewable energy fraction increased from 31.82% to 95.82% due to the integration of the photovoltaic system with a 2.25 kW fuel cell used as a robust energy storage unit. In addition, the energy supply, which is the economic aspect for the optimum system, levelised electricity cost by approximately $0.195/kWh. The obtained results showed that the proposed numerical analysis methodology offers a distinctive property that can be used effectively to optimise hybrid renewable energy systems.  相似文献   

14.
This paper performs a thermo-economic assessment of a multi-generation system based on solar and wind renewable energy sources. This system works to generate power, freshwater, and hydrogen, which consists of the following parts: the solar collectors, Steam Rankine subsystem, Organic Rankine subsystem, desalination part, and hydrogen production and compression unit. Initially, the effects of variables including reference temperature, solar radiation intensity, wind speed, and solar cycle mass flow rate, which depend on weather conditions and affect the performance of the integrated system, were investigated. The thermodynamic analysis results showed that the overall study's exergy efficiency, the rate of hydrogen and freshwater production, and total cost rate are 33.3%, 7.92 kg/h, 1.6398 kg/s, and 61.28 $/h, respectively. Also, the net power generation rate in the Steam and Organic Rankine subsystems and wind turbines are 315 kW, 326.52 kW, and 226 kW, respectively. The main goal of this study is to minimize the total cost rate of the system and maximize the exergy efficiency and hydrogen and freshwater production rate of the total system. The results of optimization showed that the exergy efficiency value improved by 20.7%, the hydrogen production rate increased by 1%, and the total cost rate value declined by 2%. Moreover, the optimum point is similar to a region in Hormozgan province, Iran. So, this region is proposed for building the power plant.  相似文献   

15.
Renewable energy represents an area of tremendous opportunity for India. Energy is considered a prime agent in the generation of wealth and a significant factor in economic development. Energy is also essential for improving the quality of life. Development of conventional forms of energy for meeting the growing energy needs of society at a reasonable cost is the responsibility of the Government. Limited fossil resources and associated environmental problems have emphasized the need for new sustainable energy supply options. India depends heavily on coal and oil for meeting its energy demand which contributes to smog, acid rain and greenhouse gases’ emission. Last 25 years has been a period of intense activities related to research, development, production and distribution of energy in India.Though major energy sources for electrical power are coal and natural gas, development and promotion of non-conventional sources of energy such as solar, wind and bio-energy, are also getting sustained attention. The use of electricity has grown since it can be used in variety of applications as well as it can be easily transmitted, the uses of renewable energy like wind and solar is rising. Wind energy is a clean, eco-friendly, renewable resource and is nonpolluting. The gross wind power potential is estimated at around 48,561 MW in the country; a capacity of 14,989.89 MW up to 31st August 2011 has so far been added through wind, which places India in the fifth position globally. This paper discusses the ways in which India has already supported the growth of renewable energy technologies i.e. wind energy and its potential to expand their contribution to world growth in a way that is consistent with world's developmental and environmental goals. The paper presents current status, major achievements and future aspects of wind energy in India.  相似文献   

16.
The utilisation of renewable energy resources for power generation is extremely important for Ireland due to the lack of indigenous fossil fuel resources. A micro-wind turbine is by far the most commonly used grid-connected micro-renewable electricity generation system for domestic applications in Ireland, followed by solar PV. Unfortunately, neither a single micro-wind turbine nor a single solar PV system can provide a continuous power supply due to variations in weather and climate conditions. The coupling of these two systems however can improve the power supply reliability by using the complementary characteristics of wind and solar energy. In this paper, a micro-renewable electricity-generation-system integration technique, tailored for applications in Ireland but generally applicable, is presented. Net present value is the parameter used to identify the optimal system. The optimal system can be a mono system, formed from a single micro-wind turbine or a single solar PV system, or a hybrid system formed from a combination of both. A renewable energy requirement is a constraint used in the integration to eliminate systems that cannot provide sufficient energy from renewable energy resources. The integration technique is applied to find the optimal system, under current Irish conditions, that can be formed from six sample micro-wind turbines and/or solar PV systems assembled from three sample solar PV modules. The analyses show that, with a 50% renewable energy requirement, the optimal system is a mono system containing a 2.4 kW micro-wind turbine; however, critically, the system is not economically viable. Four parameter studies assessing the effect of household electrical load, imported electricity price, exported electricity tariff and wind speed have also been conducted. From these studies it is seen that the most effective way to improve the financial performance of all systems is to offer a higher exported electricity tariff; installing a mono/hybrid system containing a micro-wind turbine in a location with a good wind resource can also have a significant effect.  相似文献   

17.
There is a constant growth in energy consumption and consequently energy generation around the world. During the recent decades, renewable energy sources took heed of scientists and policy makers as a remedy for substituting traditional sources. Wind and photovoltaic (PV) are the least reliable sources because of their dependence on wind speed and irradiance and therefore their intermittent nature. Energy storage systems are usually coupled with these sources to increase the reliability of the hybrid system. Environmental effects are one of the biggest concerns associated with the renewable energy sources. This study summarizes the last and most important environmental and economic analysis of a grid‐connected hybrid network consisting of wind turbine, PV panels, and energy storage systems. Focusing on environmental aspects, this paper reviews land efficiency, shaded analysis of wind turbines and PV panels, greenhouse gas emission, wastes of wind turbine and PV panels' components, fossil fuel consumption, wildlife, sensitive ecosystems, health benefits, and so on. A cost analysis of the energy generated by a hybrid system has been discussed. Furthermore, this study reviews the latest technologies for materials that have been used for solar PV manufacturing. This paper can help to make a right decision considering all aspects of installing a hybrid system. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
Most inhabitants of rural communities in Africa lack access to clean and reliable electricity. This has deprived the rural dwellers access to modern healthcare delivery. In this paper, an off-grid renewable energy system consisting of solar PV and wind turbine with hydrogen storage scheme has been explored to meet the electrical energy demands of a health clinic. The health clinic proposed is a group II with 10 beds located in a typical village in South Africa. First, the wind and solar energy resources of the village were analysed. Thereafter, the microgrid architecture that would meet the energy demand of the clinic (18.67 kWh/day) was determined. Some of the key results reveal that the average annual wind speed at 60 m anemometer height and solar irradiation of the village are 7.9 m/s and 4.779 kWh/m2/day, respectively. The required architecture for the clinic composes of 40 kW solar PV system, 3 numbers of 10 kW wind turbines, 8.6 kW fuel cell, 25 kW electrolyser and 40 kg hydrogen tank capacity. The capital cost of the microgrid was found to be $177,600 with a net present cost of $206,323. The levelised cost of energy of the system was determined to be 2.34 $/kWh. The project has a breakeven grid extension distance of 8.81 km. Since this distance is less than the nearest grid extension distance of 21.35 km, it is established that the proposed renewable energy microgrid with a hydrogen storage system is a viable option for the rural community health clinic.  相似文献   

19.
The economics and livelihoods impacts of stand-alone, small-scale (less than 2 kW) renewable energy technologies for rural electrification are assessed using a representative sample of 531 rural households in three provinces of Western China. Over 20 small wind, photovoltaic (PV) and wind–PV hybrid configurations were evaluated for their potential to meet local electricity needs. The assessment integrates lifecycle costing and geographic information system (GIS) methods in order to provide a comprehensive resource, economic, technological and livelihoods assessment. The results of the analysis indicate that off-grid renewable energy technologies can provide cost-effective and reliable alternatives to conventional generator sets in addressing rural livelihoods energy requirements. Findings also demonstrate the existence of a sizeable market potential for stand-alone renewable energy systems in Western China. In support of market development for these technologies, policy recommendations are provided.  相似文献   

20.
This paper describes the design and testing of a 10 kWp photovoltaic (PV) system and summarizes its performance results after the first 6 months of operation. This system functions as a stand-alone power system that is used to supply electricity for isolated buildings and is designed for integration with a micro-grid system (MGS), which is the future concept for a renewable energy-based power network system for Thailand. The system is comprised of the following components. An array with three different types of PV modules consisting amorphous thin film of 3672 W, polycrystalline solar cell of 3600 W and hybrid solar cell of 2880 W, making up a total peak power of 10.152 kW. In addition, there are three grid-connected inverters of 3.5 kW each, three bi-directional inverters of 3.5 kW each and an energy storage system of 100 kWh. After the first 6 months of system operation, it was found that all the components and the overall system had worked effectively. In total, the system had generated about 7852 kWh and the average electricity production per day was 43.6 kWh. The average efficiency of amorphous thin film panel, polycrystalline panel, hybrid solar cell panel and entire PV panel system was 6.26%, 10.48%, 13.78% and 8.82%, respectively. From the analysis of the daily energy production, daily energy consumption and energy storage, the results seem to indicate that there was some mismatching between energy supply and demand in the system. However, this can be overcome by integrating the system to a micro-grid network whereby the energy from the system can be diverted to other loads when there is a surplus and additional energy can be drawn from external sources and fed to the system when the internal supply is insufficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号