首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we propose an integrated system, consisting of a heliostat field, a steam cycle, an organic Rankine cycle (ORC) and an electrolyzer for hydrogen production. Some parameters, such as the heliostat field area and the solar flux are varied to investigate their effect on the power output, the rate of hydrogen produced, and energy and exergy efficiencies of the individual systems and the overall system. An optimization study using direct search method is also carried out to obtain the highest energy and exergy efficiencies and rate of hydrogen produced by choosing several independent variables. The results show that the power and rate of hydrogen produced increase with increase in the heliostat field area and the solar flux. The rate of hydrogen produced increases from 0.006 kg/s to 0.063 kg/s with increase in the heliostat field area from 8000 m2 to 50,000 m2. Moreover, when the solar flux is increased from 400 W/m2 to 1200 W/m2, the rate of hydrogen produced increases from 0.005 kg/s to 0.018 kg/s. The optimization study yields maximum energy and exergy efficiencies and the rate of hydrogen produced of 18.74%, 39.55% and 1571 L/s, respectively.  相似文献   

2.
This paper analyzes an integrated HyS cycle (hybrid sulfur cycle), isobutane cycle and electrolyzer for hydrogen production. The operating parameters such as concentration, pressure and temperature are varied to investigate their effects on the energy and exergy efficiencies of the system with/without heat recovery and integration, as well as the decomposer and rate of hydrogen produced. A new heat exchanger network is also developed to recover heat within the HyS cycle in the most efficient manner. The exergy destruction rate in each component is analyzed and discussed. From the results, increasing the pressure is beneficial up to 3222 kPa, after which the performance remains constant. The exergy efficiency varies more significantly with operating parameters than the energy efficiency. The maximum exergy destruction occurs in the heat exchanger so this component should be the focus to enhance the overall performance of the system.  相似文献   

3.
In this paper, we conduct energy and exergy analyses of the magnesium-chlorine (Mg-Cl) thermochemical cycle for hydrogen production and examine the respective cycle energy and exergy efficiencies. We also undertake a parametric study to investigate how the overall cycle performance is affected by changing the reference environment temperature and operating conditions. The results show that Mg-Cl cycle offers a good potential due to its high energy and exergy efficiencies as 63.63% and 34.86%, respectively, based upon the conditions and parameters considered. In this regard, Mg-Cl cycle appears to be a promising low temperature thermochemical cycle. It may, therefore, compete with other low temperature thermochemical and hybrid cycles such as the copper–chlorine cycle.  相似文献   

4.
This paper analyzes a new low-temperature electrolysis hydrogen production system using molybdenum-oxo catalysts in the cathode and a platinum based anode. A thermodynamic model is developed for the electrolysis process in order to predict and analyze the energy and exergy efficiencies. The new electrolysis system with molybdenum-oxo catalysts consists of two half cells of PEM (proton exchange membrane) and alkaline electrolysis. The effects of temperature and membrane thickness are reported at varying current densities. The results are presented and compared with previous studies to demonstrate the promising performance of the system.  相似文献   

5.
The purpose of this paper is to conduct a parametric study to show the best steam to carbon ratio that produces the maximum system performance of an integrated gasifier for hydrogen production. The study focuses on the energy and exergetic efficiency of the system and hydrogen production. The work is completed using computer simulation models in Engineering Equation Solver software package. This software is used for its extensive thermodynamic properties library. An equilibrium based model is used to determine the performance of the system. The data is presented in graphs which show the chemical composition in molar fractions of the syngas, the overall energy and exergy efficiency of the system, and the hydrogen production rates. A study of these parameters is conducted by varying the steam to carbon ratio entering the gasifier and the ambient temperature. It is observed that the higher the steam to carbon ratio that is achieved the more hydrogen and more power the plant is able to produce. Because of this, the exergy and energy efficiency of the system increases as the steam to carbon ratio increases as well. It is also observed that the system favors a lower ambient temperature for maximum exergy efficiency and hydrogen production.  相似文献   

6.
Energy and exergy analyses of space heating in buildings   总被引:1,自引:0,他引:1  
In the present study, energy and exergy analyses are presented for the whole process of space heating in buildings. This study is based on a pre-design analysis tool, which has been produced during ongoing work for the International Energy Agency (IEA) formed within the Energy Conservation in Buildings and Community Systems Programme (ECBCSP) Annex 37. Throughout this paper, in all of the calculations such as heat losses and gains were taken according to Turkish Standards Institution TSE, which is in accordance with the European Standard TS EN ISO 13789. In the analysis, heating load is taken account but cooling load is neglected and the calculations presented here are done using steady state conditions. The analysis is applied to an office in Izmir with a volume of 720 m3 and a net floor area of 240 m2 as an example of application. Indoor and exterior air temperatures are 20 °C and 0 °C, respectively. It is assumed that the office is heated by a liquid natural gas (LNG) fired conventional boiler, an LNG condensing boiler and an external air–air heat pump. With this study, energy and exergy flows are investigated. Energy and exergy losses in the whole system are quantified and illustrated. The highest efficiency values in terms of energy and exergy were found to be 80.9% for external air–air heat pump and 8.69% for LNG condensing boiler, respectively.  相似文献   

7.
The current study deals with the thermodynamic modeling of an innovative integrated plant based on solid oxide fuel cell (SOFC) with liquefied natural gas (LNG) cold energy supply. For the suggested innovative plant the energy, and exergy simulations are fully extended and the plant comprehensively analyzed. According to mathematical simulations of the proposed plant, a MATLAB code has been extended. The results indicate that under considered initial conditions, the efficiencies of SOFC and net power generation calculated 58% and 78%, respectively and the CO2-capture rate is obtained 79 kg/h. This study clearly shows that the integrated system reached high efficiency while having zero emissions. In addition, the efficiencies and net amount of power generation, cooling or heating output and SOFC power generation are discussed in detail as a function of different variables such utilization factor, air/fuel ratio, or SOFC inlet temperature. For enhancing the power production efficiency of SOFC, the net electricity, and CCHP exergy efficiency the plant should run in higher utilization factor and lower air/fuel ration also it's important to approximately set SOFC temperature to its ideal temperature.  相似文献   

8.
This study deals with the energy and exergy analysis of a molten carbonate fuel cell hybrid system to determine the efficiencies, irreversibilities and performance of the system. The analysis includes the operation of each component of the system by mass, energy and exergy balance equations. A parametric study is performed to examine the effect of varying operating pressure, temperature and current density on the performance of the system. Furthermore, thermodynamic irreversibilities in each component of the system are determined. An overall energy efficiency of 57.4%, exergy efficiency of 56.2%, bottoming cycle energy efficiency of 24.7% and stack energy efficiency of 43.4% are achieved. The results demonstrate that increasing the stack pressure decreases the overpotential losses and, therefore, increases the stack efficiency. However, this increase is limited by the remaining operating conditions and the material selection of the stack. The fuel cell and the other components in which chemical reactions occur, show the highest exergy destruction in this system. The compressor and turbine on the other hand, have the lowest entropy generation and, thus, the lowest exergy destruction.  相似文献   

9.
This study deals with the thermodynamic analysis of molten carbonate fuel cell combined with a gas turbine, based on the first- and second-law of thermodynamics. The mass, energy, entropy and exergy balance equations are written and applied to the system and its components. Some parametric studies are performed to investigate the change of system performance through energy and exergy efficiencies with the change of operating conditions. The irreversibilities occuring in different devices of the integrated system are also investigated through the exergy destruction analysis in these devices. The maximum output work of the MCFC is estimated to be 314.3 kW for an operating temperature of 650 °C. The overall energy and exergy efficiencies achieved for this system are 42.89% and 37.75%, respectively.  相似文献   

10.
Energy and exergy analyses of a raw mill in a cement production   总被引:2,自引:0,他引:2  
Cement production has been one of the most energy intensive industries in the world. In order to produce raw materials preparation, clinker and rotary kilns are widely used in cement plants. The objective of this study is to perform energy and exergy analysis of a raw mill (RM) and raw materials preparation unit in a cement plant in Turkey using the actual operational data. The RM has a capacity of 82.9 ton-material hourly. Both energy and exergy efficiencies of the RM are investigated for the plant performance analysis and improvement, and are determined to be 84.3% and 25.2%, respectively. The present technique is proposed as a useful tool in the analysis of energy and exergy utilization, developing energy policies and providing energy conservation measures.  相似文献   

11.
Results are reported of thermodynamic analyses of a biomass gasification unit in which sawdust is the biomass feed and the gasifying medium is either air or steam. Energy and exergy analyses are performed for the system and each of its components. A parametric study reveals the effect of design and operating parameters on the system's performance and energy and exergy efficiencies. The results show that the adiabatic temperature of biomass gasification significantly changes with the type of the gasifying medium. In addition, the exergy and energy efficiencies are observed to be higher when air is the gasifying medium rather than steam, while the system performance and exergy efficiencies are dependent on the moisture content of the feed biomass. The results are significant because they quantify the strong dependence of biomass gasification, which can be used for syngas or hydrogen production, on moisture content, and gasifying medium.  相似文献   

12.
In this study, a solar thermal based integrated system with a supercritical-CO2 (sCO2) gas turbine (GT) cycle, a four-step Mg–Cl cycle and a five-stage hydrogen compression plant is developed, proposed for applications and analyzed thermodynamically. The solar data for the considered solar plant are taken for Greater Toronto Area (GTA) by considering both daily and yearly data. A molten salt storage is considered for the system in order to work without interruption when the sun is out. The power and heat from the solar and sCO2-GT subsystems are introduced to the Mg–Cl cycle to produce hydrogen at four consecutive steps. After the internal heat recovery is accomplished, the heating process at required temperature level is supplied by the heat exchanger of the solar plant. The hydrogen produced from the Mg–Cl cycle is compressed up to 700 bar by using a five-stage compression with intercooling and required compression power is compensated by the sCO2-GT cycle. The total energy and exergy inputs to the integrated system are found to be 1535 MW and 1454 MW, respectively, for a 1 kmol/s hydrogen producing plant. Both energy and exergy efficiencies of the overall system are calculated as 16.31% and 17.6%, respectively. When the energy and exergy loads of the receiver are taken into account as the main inputs, energy and exergy efficiencies become 25.1%, and 39.8%, respectively. The total exergy destruction within the system is found to be 1265 MW where the solar field contains almost 64% of the total irreversibility with a value of ~811 MW.  相似文献   

13.
In this study, both energetic and exergetic performances of a combined heat and power (CHP) system for vehicular applications are evaluated. This system proposes ammonia-fed solid oxide fuel cells based on proton conducting electrolyte (SOFC-H+) with a heat recovery option. Fuel consumption of combined fuel cell and energy storage system is investigated for several cases. The performance of the portable SOFC system is studied in a wide range of the cell’s average current densities and fuel utilization ratios. Considering a heat recovery option, the system exergy efficiency is calculated to be 60-90% as a function of current density, whereas energy efficiency varies between 60 and 40%, respectively. The largest exergy destructions take place in the SOFC stack, micro-turbine, and first heat exchanger. The entropy generation rate in the CHP system shows a 25% decrease for every 100 °C increase in average operating temperature.  相似文献   

14.
In this study, a new solar power assisted multigeneration system designed and thermodynamically analyzed. In this system, it is designed to perform heating, cooling, drying, hydrogen and power generation with a single energy input. The proposed study consists of seven sub-parts which are namely parabolic dish solar collector, Rankine cycle, organic Rankine cycle, PEM-electrolyzer, double effect absorption cooling, dryer and heat pump. The effects of varying reference temperature, solar irradiation, input and output pressure of high-pressure turbine and pinch point temperature heat recovery steam generator are investigated on the energetic and exergetic performance of integration system. Thermodynamic analysis result outputs show that the energy and exergy performance of overall study are computed as 48.19% and 43.57%, respectively. Moreover, the highest rate of irreversibility has the parabolic dish collector with 24,750 kW, while the lowest rate of irreversibility is calculated as 5745 kW in dryer. In addition, the main contribution of this study is that the solar-assisted multi-generation systems have good potential in terms of energy and exergy efficiency.  相似文献   

15.
The performance of a clean energy system that combines the coal gasification and alkaline water electrolyzer concepts to produce hydrogen is evaluated through thermodynamic modeling and simulations. A parametric study is conducted to determine the effect of water ratio in coal slurry, gasifier temperature, effectiveness of carbon dioxide removal, and hydrogen recovery efficiency of the pressure swing adsorption unit on the system hydrogen production. The exergy efficiency and exergy destruction in each system component are also evaluated. The results reveal that the overall energy and exergy efficiencies of this system are ∼58% and ∼55%, respectively. The weight ratio of the hydrogen yielded to the coal fed to this system is ∼0.126. Although this system produces hydrogen from coal, the greenhouse gases emitted from this system are fairly low.  相似文献   

16.
Coal gasification system integrated with solid oxide fuel cell (SOFC) provides a promising energy conversion way owing to its high efficiency. To get a deep insight into the energy performance of this system, a thermodynamic evaluation is implemented. Meanwhile, the technologies of chemical looping and CO2 sorption are introduced into this integration system. It is found that the addition of oxygen carrier and sorbent into coal gasification system can promote the output power of the SOFC with a higher exergy destruction, where the exergy efficiency of most modules in the system can reach 80% except tar separation. The results also reveal that a suitable improvement of gasifying agent amount is beneficial to the energy performance of the system. When the H2O/C molar ratio is increased to 3.0, the SOFC exergy efficiency of 97% can be achieved.  相似文献   

17.
Growing the consumption of fossil fuels and emerging global warming issue have driven the research interests toward renewable and environmentally friendly energy sources. Biomass gasification is identified as an efficient technology to produce sustainable hydrogen. In this work, energy and exergy analysis coupled with thermodynamic equilibrium model were implemented in biomass gasification process for production of hydrogen. In this regard, a detailed comparison of the performance of a downdraft gasifier was implemented using air, steam, and air/steam as the gasifying agents for horse manure, pinewood and sawdust as the biomass materials. The comparison results indicate that the steam gasification of pinewood generates a more desired product gas compositions with a much higher hydrogen exergy efficiency and low exergy values of unreacted carbon and irreversibility. Then the effects of the inherent operating factors were investigated and optimized applying a response surface methodology to maximize hydrogen exergy efficiency of the process. A hydrogen exergy efficiency of 44% was obtained when the product gas exergy efficiency reaches to the highest value (88.26%) and destruction and unreacted carbon efficiencies exhibit minimum values of 7.96% and 1.9%.  相似文献   

18.
Comparative exergy models for naturally aspirated gasoline and hydrogen fuelled spark ignition internal combustion engines were developed according to the second law of thermodynamics. A thorough analysis of heat transfer, work, thermo mechanical, and chemical exergy functions was made. An irreversibility function was developed as a function of entropy generation and graphed. A second law analysis yielded a fractional exergy distribution as a percentage of chemical exergy of the intake. It was found that the hydrogen fuelled engine had a greater proportion of its chemical exergy converted into work exergy, indicating a second law efficiency of 41.37% as opposed to 35.74% for a gasoline fuelled engine due to significantly lower irreversibilities and lower specific fuel consumption associated with a hydrogen fuelled ICE. The greater exergy due to heat transfer or thermal availability associated with the hydrogen fuelled engine occurs due to a greater amount of convective heat transfer associated with hydrogen combustion. However, this seemingly high available thermal energy or thermal ‘exergy’ is misleading due to the higher cooling load which decreases the power of a hydrogen fuelled ICE. Finally, a second law analysis of both hydrogen and gasoline combustion reactions indicate a greater combustion irreversibility associated with gasoline combustion. A percentage breakdown of the combustion irreversibilities were also constructed according to information found in literature searches.  相似文献   

19.
In this paper, a comprehensive thermodynamic evaluation of an integrated plant with biomass is investigated, according to thermodynamic laws. The modeled multi-generation plant works with biogas produced from demolition wood biomass. The plant mainly consists of a biomass gasifier cycle, clean water production system, hydrogen production, hydrogen compression, gas turbine sub-plant, and Rankine cycle. The useful outputs of this plant are hydrogen, electricity, heating and clean water. The hydrogen generation is obtained from high-temperature steam electrolyzer sub-plant. Moreover, the membrane distillation unit is used for freshwater production, and also, the hydrogen compression unit with two compressors is used for compressed hydrogen storage. On the other hand, energy and exergy analyses, as well as irreversibilities, are examined according to various factors for examining the efficiency of the examined integrated plant and sub-plants. The results demonstrate that the total energy and exergy efficiencies of the designed plant are determined as 52.84% and 46.59%. Furthermore, the whole irreversibility rate of the designed cycle is to be 37,743 kW, and the highest irreversibility rate is determined in the biomass gasification unit with 12,685 kW.  相似文献   

20.
Despite its shortcomings, fossil-based fuels are still utilized as the main energy source, accounting for about 80% of the world's total energy supply with about one-third of which comes from coal. However, conventional coal-fired power plants emit relatively higher amounts of greenhouse gases, and the derivatives of air pollutants, which necessitates the integration of environmentally benign technologies into the conventional power plants. In the current study, a H2–CO synthesis gas fueled solid oxide fuel cell (SOFC) is integrated to the coal-fired combined cycle along with a concentrated solar energy system for the purpose of promoting the cleaner energy applications in the fossil fuel-based power plants. The underlying motivation of the present study is to propose a novel design for a conventional coal-fired combined cycle without altering its main infrastructure to make its environmentally hazardous nature more ecofriendly. The proposed SOFC integrated coal-fired combined cycle is modeled thermodynamically for different types of coals, namely pet coke, Powder River Basin (PRB) coal, lignite and anthracite using the Engineering Equation Solver (EES) and the Ebsilon software packages. The current results show that the designed hybrid energy system provide higher performance with higher energy and exergy efficiencies ranging from 70.6% to 72.7% energetically and from 35.5% to 43.8% exergetically. In addition, carbon dioxide emissions are reduced varying between 18.31 kg/s and 30.09 kg/s depending on the selected coal type, under the assumption of 10 kg per second fuel inlet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号