首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper documents the application of exhaust gas fuel reforming of two alternative fuels, biodiesel and bioethanol, in internal combustion engines. The exhaust gas fuel reforming process is a method of on-board production of hydrogen-rich gas by catalytic reaction of fuel and engine exhaust gas. The benefits of exhaust gas fuel reforming have been demonstrated by adding simulated reformed gas to a diesel engine fuelled by a mixture of 50% ultra low sulphur diesel (ULSD) and 50% rapeseed methyl ester (RME) as well as to a homogeneous charge compression ignition (HCCI) engine fuelled by bioethanol. In the case of the biodiesel fuelled engine, a reduction of NOx emissions was achieved without considerable smoke increase. In the case of the bioethanol fuelled HCCI engine, the engine tolerance to exhaust gas recirculation (EGR) was extended and hence the typically high pressure rise rates of HCCI engines, associated with intense combustion noise, were reduced.  相似文献   

2.
Hydrogen on-board fuel reforming has been identified as a waste energy recovery technology with potential to improve Internal combustion engines (ICE) efficiency. Additionally, can help to reduce CO2, NOx and particulate matter (PM) emissions. As this thermochemical energy is recovered from the hot exhaust stream and used in an efficient way by endothermic catalytic reforming of petrol mixed with a fraction of the engine exhaust gas. The hydrogen-rich reformate has higher enthalpy than the petrol fed to the reformer and is recirculated to the intake manifold, which will be called reformed exhaust gas recirculation (rEGR).The rEGR system has been simulated by supplying hydrogen (H2) and carbon monoxide (CO) into a conventional Exhaust Gas Recirculation (EGR) system. The hydrogen and CO concentrations in the rEGR stream were selected to be achievable in practice at typical gasoline exhaust temperatures (temperatures between 300 and 600 °C). A special attention has been paid on comparing rEGR to the baseline ICE, and to conventional EGR. The results demonstrate the potential of rEGR to simultaneously increase thermal efficiency, reduce gaseous emissions and decrease PM formation.Complete fuel reformation can increase the calorific value of the fuel by 28%. This energy can be provided by the waste heat in the exhaust and so it is ideal for combination with a gasoline engine with its high engine-out exhaust temperatures.The aim of this work is to demonstrate that exhaust gas fuel reforming on an engine is possible and is commercially viable. Also, this paper demonstrates how the combustion of reformate in a direct injection gasoline engine via reformed Exhaust Gas Recirculation (rEGR) can be beneficial to engine performance and emissions.  相似文献   

3.
In Homogeneous Charge Compression Ignition (HCCI) combustion, a lean premixed charge combusts simultaneously in multiple sites. Utilizing highly diluted mixtures, and lack of any significant flame propagation, in-cylinder NOx formation is reduced. Making HCCI engine a feasible alternative to conventional engines requires several challenges to be resolved. Combustion timing control is one of the most important of these items. It should be done in order that heat is released at the most optimum phasing for efficiency and emissions. In this study, a Waukesha Cooperative Fuel Research (CFR) single cylinder research engine was used to be operated in HCCI combustion mode fueled by natural gas and n-heptane. The main goal of the experiments was to investigate the possibility of controlling combustion phasing and combustion duration using various Exhaust Gas Recirculation (EGR) fractions. For the analysis of the results, a modified apparent heat release model was developed. The influence of EGR on emissions was discussed. Results indicate that applying EGR reduces mean charge temperature and has profound effect on combustion phasing, leading to a retarded Start of Combustion (SOC) and prolonged burn duration. Heat transfer rate decreases with EGR addition. Under examined condition EGR addition improved fuel economy, reduced NOx emissions and increased HC and CO emissions.  相似文献   

4.
In the current work, Chemkin Pro's HCCI numerical model is used in order to explore the feasibility of using hydrogen in a dual fuel concept where hydrogen peroxide acts as ignition promoter. The analysis focuses on the engine performance characteristics, the combustion phasing and NOx emissions. It is shown that the use of hydrogen/hydrogen peroxide at extremely fuel lean conditions (φeff = 0.1 ? 0.4) results in significantly better performance characteristics (up to 60% increase of IMEP and 80% decrease of NOx) compared to the case of a preheated hydrogen/air mixture that aims to simulate the use of a glow plug. It is also shown that the addition of H2O2 up to 10% (per fuel volume) increases significantly the IMEP, power, torque, thermal efficiency (reaching values more than 60%) while also decreasing remarkably NOx emissions which will not require any exhaust after-treatment, for all engine speeds. The results presented herein are novel and promising, yet further research is required to demonstrate the feasibility of the proposed technology.  相似文献   

5.
The exhaust gas-fuel reforming technique known as reformed exhaust gas recirculation (REGR) can generate on-board hydrogen-rich gas mixture (i.e., reformate) by catalytic reforming of the exhaust gas and fuel added into the reformer and then recirculate the reformate into the engine cylinder, which can realize the combination of hydrogen-rich lean combustion and exhaust gas recirculation. The REGR technique can be employed to achieve efficient and stable lean-burn combustion for the marine engine fueled with natural gas (i.e., marine NG engine) and it is considered as an effective way to meet the stringent ship emissions regulations. In the present study, an experimental investigation into the effects of reformate addition ratio (Rre) and excess air ratio (λ) on the combustion and emissions characteristics of a marine NG engine under various loads was conducted, and the potential of applying the REGR technique in a marine NG engine to achieve low emissions (i.e., International Maritime Organization Tier Ⅲ emissions legislations for international ships) was discussed. The results indicate that the addition of the hydrogen-rich reformate gases can extend lean-burn limit. For a given λ, the flame development duration and rapid combustion duration decrease with the increase of Rre, and the combustion efficiency is improved. The brake specific NOx emissions first increase and then decrease with the increase of Rre due to the competition between the combustion phase and total heat release value. The brake specific THC emissions decline with the increase of Rre, while the reverse holds for the brake specific CO emissions, and the behavior tends to be obvious under large λ. It is demonstrated that the combination of REGR and the lean-burn combustion strategy can improve the trade-off relationship between the NOx emissions and brake specific fuel consumption of the marine NG engine to meet the IMO Tier Ⅲ NOx emissions legislations and maintain relatively low brake specific fuel consumption.  相似文献   

6.
Reformed exhaust gas recirculation technology has attracted great attention in internal combustion engines. A platform of an exhaust gas-fuel reformer connected with the marine LNG engine was set up for generating on-board hydrogen. Based on the platform, effects of the methane to oxygen ratio (M/O) and reformed exhaust gas ratio (REG) from the reformer and excess air ratio (λ) from the engine on the components, hydrogen yield, thermal efficiency and reforming process of the reformer were experimentally investigated. Results shown that hydrogen-rich gases (reformate) can be generated by reforming the mixture of engine exhaust gas (about 400 °C) and methane supplied via the reformer with Ni/Al2O3 catalyst, and the hydrogen concentration of reformate was between 6.2% and 12.6% by volume. The methane supplied rate and λ affected the components and temperature of the reactant in the reformer, while REG changed the gas hour space velocity during the exhaust gas-fuel reforming processes, resulting in the difference in the components of the reformate and thermal efficiency. At the present experimental condition, the highest H2 concentration reformate was generated under the M/O of 2.0, λ of 1.55 and REG of 6%.  相似文献   

7.
HCCI combustion has been drawing the considerable attention due to high efficiency and lower nitrogen oxide (NOx) and particulate matter (PM) emissions. However, there are still tough challenges in the successful operation of HCCI engines, such as controlling the combustion phasing, extending the operating range, and high unburned hydrocarbon and CO emissions. Massive research throughout the world has led to great progress in the control of HCCI combustion. The first thing paid attention to is that a great deal of fundamental theoretical research has been carried out. First, numerical simulation has become a good observation and a powerful tool to investigate HCCI and to develop control strategies for HCCI because of its greater flexibility and lower cost compared with engine experiments. Five types of models applied to HCCI engine modelling are discussed in the present paper. Second, HCCI can be applied to a variety of fuel types. Combustion phasing and operation range can be controlled by the modification of fuel characteristics. Third, it has been realized that advanced control strategies of fuel/air mixture are more important than simple homogeneous charge in the process of the controlling of HCCI combustion processes. The stratification strategy has the potential to extend the HCCI operation range to higher loads, and low temperature combustion (LTC) diluted by exhaust gas recirculation (EGR) has the potential to extend the operation range to high loads; even to full loads, for diesel engines. Fourth, optical diagnostics has been applied widely to reveal in-cylinder combustion processes. In addition, the key to diesel-fuelled HCCI combustion control is mixture preparation, while EGR is the main path to achieve gasoline-fuelled HCCI combustion. Specific strategies for diesel-fuelled, gasoline-fuelled and other alternative fuelled HCCI combustion are also discussed in the present paper.  相似文献   

8.
Homogeneous charge compression ignition (HCCI) combustion mode provides very low NOx and soot emissions; however, it has some challenges associated with hydrocarbon (HC) emissions, fuel consumption, difficult control of start of ignition and bad behaviour to high loads. Cooled exhaust gas recirculation (EGR) is a common way to control in-cylinder NOx production in diesel and HCCI combustion mode. However EGR has different effects on combustion and emissions, which are difficult to distinguish. This work is intended to characterize an engine that has been modified from the base diesel engine (FL1 906 DEUTZ-DITER) to work in HCCI combustion mode. It shows the experimental results for the modified diesel engine in HCCI combustion mode fueled with commercial diesel fuel compared to the diesel engine mode. An experimental installation, in conjunction with systematic tests to determine the optimum crank angle of fuel injection, has been used to measure the evolution of the cylinder pressure and to get an estimate of the heat release rate from a single-zone numerical model. From these the angle of start of combustion has been obtained. The performances and emissions of HC, CO and the huge reduction of NOx and smoke emissions of the engine are presented. These results have allowed a deeper analysis of the effects of external EGR on the HCCI operation mode, on some engine design parameters and also on NOx emission reduction.  相似文献   

9.
Natural gas has a high auto-ignition temperature, requiring high compression ratios and/or intake charge heating to achieve homogenous charge compression ignition (HCCI) engine operation. It is shown here that hydrogen in the form of reformed gas helps in lowering the intake temperature required for stable HCCI operation. It has been shown that the addition of hydrogen advances the start of combustion in the cylinder. This is a result of the lowering of the minimum intake temperature required for auto-ignition to occur during the compression stroke, resulting in advanced combustion for the same intake temperatures. This paper documents experimental results using closed loop exhaust gas fuel reforming for production of hydrogen. When this reformed gas is introduced into the engine, a decrease in intake air temperature requirement is observed for a range of engine loads. Thus for a given intake temperature, lower engine loads can be achieved. This would translate to an extension of the HCCI lower load boundary for a given intake temperature.  相似文献   

10.
The homogeneous charge compression ignition (HCCI) is an alternative combustion concept for in reciprocating engines. The HCCI combustion engine offers significant benefits in terms of its high efficiency and ultra low emissions. In this investigation, port injection technique is used for preparing homogeneous charge. The combustion and emission characteristics of a HCCI engine fuelled with ethanol were investigated on a modified two-cylinder, four-stroke engine. The experiment is conducted with varying intake air temperature (120–150 °C) and at different air–fuel ratios, for which stable HCCI combustion is achieved. In-cylinder pressure, heat release analysis and exhaust emission measurements were employed for combustion diagnostics. In this study, effect of intake air temperature on combustion parameters, thermal efficiency, combustion efficiency and emissions in HCCI combustion engine is analyzed and discussed in detail. The experimental results indicate that the air–fuel ratio and intake air temperature have significant effect on the maximum in-cylinder pressure and its position, gas exchange efficiency, thermal efficiency, combustion efficiency, maximum rate of pressure rise and the heat release rate. Results show that for all stable operation points, NOx emissions are lower than 10 ppm however HC and CO emissions are higher.  相似文献   

11.
Homogenous charge compression ignition (HCCI) combustion has the potential to work with high thermal efficiency, low fuel consumption, and extremely low NOx-PM emissions. In this study, zero-dimensional single-zone and quasi-dimensional multi-zone detailed chemical kinetics models were developed to predict and control an HCCI combustion engine fueled with a natural gas and reformer gas (RG) blend. The model was validated through experiments performed with a modified single-cylinder CFR engine. Both models were able to acceptably predict combustion initiation. The result shows that the chemical and thermodynamic effects of RG blending advance the start of combustion (SOC), whereas dilution retards SOC. In addition, the chemical effect was stronger than the dilution effect, which was in turn stronger than the thermal effect. Furthermore, it was found that the strength of the chemical effect was mainly dependent on H2 content in RG. Moreover, the amount of RG and concentration of species (CO–H2) were varied across a wide range of values to investigate their effects on the combustion behavior in an HCCI engine. It was found that the H2 concentration in RG has a more significant effect on SOC at lower RG percentages in comparison with the CO concentration. However, in higher RG percentages, the CO mass concentration becomes more effective than H2 in altering SOC.  相似文献   

12.
Combustion in HCCI engines is a controlled auto ignition of well-mixed fuel, air and residual gas. Since onset of HCCI combustion depends on the auto ignition of fuel/air mixture, there is no direct control on the start of combustion process. Therefore, HCCI combustion becomes unstable rather easily, especially at lower and higher engine loads. In this study, cycle-to-cycle variations of a HCCI combustion engine fuelled with ethanol were investigated on a modified two-cylinder engine. Port injection technique is used for preparing homogeneous charge for HCCI combustion. The experiments were conducted at varying intake air temperatures and air–fuel ratios at constant engine speed of 1500 rpm and P-θ diagram of 100 consecutive combustion cycles for each test conditions at steady state operation were recorded. Consequently, cycle-to-cycle variations of the main combustion parameters and performance parameters were analyzed. To evaluate the cycle-to-cycle variations of HCCI combustion parameters, coefficient of variation (COV) of every parameter were calculated for every engine operating condition. The critical optimum parameters that can be used to define HCCI operating ranges are ‘maximum rate of pressure rise’ and ‘COV of indicated mean effective pressure (IMEP)’.  相似文献   

13.
Homogeneous charge compression ignition (HCCI) combustion in diesel engines offers the potential of simultaneous low NOx and soot emissions. However, this is normally accompanied by high hydrocarbon (HC) levels in the exhaust and an early combustion phasing before the top‐dead‐center (TDC) that may drain out substantial amounts of fuel energy from the engine cycle. Exhaust gas recirculation is usually applied to delay the onset of combustion, thereby shifting the phasing of the heat release close to the TDC. Although the retarded phasing improves the engine energy efficiency, a significant increase in HC and carbon monoxide emissions will deteriorate the combustion efficiency. Therefore, an inherent trade‐off exists between the combustion phasing and the combustion efficiency that needs to be minimized for improved energy efficiency. In this work, both theoretical and experimental studies have been carried out to evaluate the combustion efficiency‐phasing (CEP) trade‐off. Engine tests have been conducted to analyze the losses in combustion (burning) and phasing efficiencies, and along with theoretical analyses, the CEP trade‐off has been evaluated in terms of a ‘coefficient of combustion inefficiency’ (CCI). The CCI quantitatively correlates the losses in combustion and phasing efficiencies and provides a reference for improving the combustion phasing of the HCCI operation vis‐à‐vis the combustibles in the exhaust. The focus of this research is to carry out a quantitative analysis of the energy efficiency of HCCI cycles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
In this study, we evaluated the properties of a reforming catalyst system for generating hydrogen from liquified petroleum gas (LPG) fuel and supplying hydrogen to an LPG engine. The fuel supply system of the LPG engine was modified in order to supply LPG to a reforming catalyst prior to combustion. A test apparatus was also built to evaluate the performance of a reforming catalyst system. Gas chromatography was used to measure H2, N2, O2, CH4, and CO emissions, while CO2 emissions were measured using an exhaust gas analyzer. The products concentration of the reforming reactions according to reforming fuel quantity and air flow was analyzed. In actual engine operating conditions, H2 yield and air flow were proportional, whereas H2 yield and fuel reforming fuel quantity were inversely proportional. The experimental results of the reforming reaction under various conditions will be used as the basic data for integrating the reforming catalyst system into an actual operating engine.  相似文献   

15.
This work demonstrated the first-ever cold-start operation of an ammonia (NH3)-fueled four-cylinder spark ignition engine with an on-board fuel reformer, applying autothermal reforming. In this system, an electrically heated NH3-air mixture was provided to a reforming catalyst and approximately 3 s was found to elapse between the start of engine rotation and the onset of combustion. Stable fast idle operation in conjunction with a cold start was realized with a H2-to-NH3 molar ratio of 2:1. Nearly zero NH3 emissions were achieved during cold start and fast idle until the engine warmed up, by adsorbing unburned NH3 passing through a three-way catalyst before the catalyst was sufficiently warmed up. The NH3 adsorption capacity of this system could be regenerated during the engine warm-up when the engine was running under lean conditions.  相似文献   

16.
In this paper advanced combustion concepts such as HCCI and PCCI were studied in a single-cylinder engine. PCCI was achieved by the combination of part aspiration and part direct injection of DME in the experiments, which was a compromise to obtain HCCI in that only a portion of the fuel was premixed and the portion of combustion was still controlled by the injection timing. Basic investigations toward the PCCI and HCCI combustion in a DME engine were carried out. DICI operation was also conducted to make a comparison. Results showed that as for the PCCI combustion operation, pmax, (dp/)max and heat release rate were between the values of HCCI and DICI operation and they increased with a rise of premixed ratio. The combustion duration for the PCCI combustion was longer than those of HCCI combustion, but was shorter than that of DICI combustion. Furthermore, the combustion duration decreased and the brake thermal efficiency increased with an increase in premixed ratio. CO and HC emissions for the PCCI combustion operation were lower than those of the HCCI engine. In comparison to conventional DICI operation, NOx emissions for the PCCI combustion operation decreased significantly. Experiments also indicated that the fuel injection timing had a great influence on the performance and emissions of a DME engine at a PCCI combustion mode.  相似文献   

17.
《能源学会志》2020,93(3):1163-1176
In this study, the effects of tetrahydrofuran (THF) which is nontoxic and generated from renewable environmentally friendly lignocelluloses, and n-heptane/THF blends on combustion, performance and emission characteristics were investigated at various lambda, engine speed and inlet air temperatures. Wide ranges of lambda value and engine speed were investigated and the results were presented in comparison to n-heptane as reference fuel. The combustion parameters such as cylinder pressure, heat release rate, in-cylinder gas temperature, CA10, CA50, thermal efficiency, ringing intensity, maximum pressure rise rate and imep, the performance parameters such as brake torque, power output, specific fuel consumption and HC and CO emissions were determined. Operating range of the HCCI engine was also determined. The results showed that, increasing the lambda value decreased both the in-cylinder pressure and the heat release rate for all test fuels. The addition of tetrahydrofuran led to retard combustion phasing. Thermal efficiency increased about 54% for F60N40 compared to n-heptane at 60 °C inlet air temperature, 1200 rpm engine speed and λ = 2.2. The results also showed that HC and CO emissions increased with the increase of tetrahydrofuran. Furthermore, tetrahydrofuran caused to expand HCCI operating range towards to knocking and misfiring boundaries.  相似文献   

18.
《Energy》2006,31(14):2665-2676
This paper focuses on the effects of internal and cooled external exhaust gas recirculation (EGR) on the combustion and emission performance of diesel fuel homogeneous charge compression ignition (HCCI). The use of fuel injection before the top center (TC) of an exhaust stroke and the negative valve overlap (NVO) to form the homogeneous mixture achieves low NOx and smoke emissions HCCI. Internal and external EGR are combined to control the combustion. Internal exhaust gas recirculation (IEGR) benefits to form a homogeneous mixture and reduces smoke emission further, but lower the high load limits of HCCI. Cooled external EGR can delay the start of combustion (SOC) effectively, which is very useful for high cetane fuel (diesel) HCCI because these fuels can easily self-ignited, making the SOC earlier. External EGR can avoid the knock combustion of HCCI at high load, which means it can expand the high load limit. HCCI maintains low smoke emission at various EGR rates and various loads compared with a conventional diesel engine because there are no fuel-rich volumes in the cylinder.  相似文献   

19.
The mechanisms of the influence of hydrogen enrichment on the combustion and emission characteristics of an n-heptane fuelled homogeneous charge compression ignition (HCCI) engine was numerically investigated using a multi-zone model. The model calculation successfully captured the most available experimental data. The results show that hydrogen addition retards combustion phasing of an n-heptane fuelled HCCI engine due to the dilution and chemical effects, with the dilution effect being more significant. It is because of the chemical effect that combustion duration is reduced at a constant compression ratio if an appropriate amount of hydrogen is added. As a result of retarded combustion phasing and reduced combustion duration, hydrogen addition increases indicated thermal efficiency at a constant combustion phasing. Hydrogen addition reduces indicated specific unburned hydrocarbon emissions, but slightly increases normalized unburned hydrocarbon emissions that are defined as the emissions per unit burned n-heptane mass. The increase in normalized unburned hydrocarbon emissions is caused by the presence of more remaining hydrocarbons that compete with hydrogen for some key radicals during high temperature combustion stage. At a given hydrogen addition level, N2O emissions increases with overly retarding combustion phasing, but hydrogen addition moderates this increase in N2O emissions.  相似文献   

20.
《Energy》2005,30(11-12):2206-2218
Combustion characteristics of low-BTU gases (about 1000 kcal/N m3) were experimentally investigated in order to develop engine generators for waste gasification and power generation systems. Two simulated low-BTU gases, obtained from one-step high temperature gasification (hydrogen rich) and two-step pyrolysis/reforming gasification (methane rich), as well as natural gas, were tested in a small-scale spark ignition engine. Compared to the natural gas driven engine, the hydrogen rich low-BTU gas driven engine showed similar thermal efficiency but with significantly lower NOx and hydrocarbon emissions and wider equivalence ratio range for stable engine operation. On the other hand, the methane rich low-BTU gas engine showed narrower equivalence ratio range for stable operation. The test results show engine performance more depends on combustion characteristics than on the heating value of the fuel gas. For better engine performance, hydrogen rich fuel gas is desirable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号