首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Glucose and xylose are the dominant monomeric carbohydrates present in agricultural materials which can be used as potential building blocks for various biotechnological products including biofuels production. Hence, the imperative role of glucose to xylose ratio on fermentative biohydrogen production by mixed anaerobic consortia was investigated. Microbial catabolic H2 and VFA production studies revealed that xylose is a preferred carbon source compared to glucose when used individually. A maximum of 1550 and 1650 ml of cumulative H2 production was observed with supplementation of glucose and xylose at a concentration of 5.5 and 5.0 g L−1, respectively. A triphasic pattern of H2 production was observed only with studied xylose concentration range. pH impact data revealed effective H2 production at pH 6.0 and 6.5 with xylose and glucose as carbon sources, respectively. Co-substrate related biohydrogen fermentation studies indicated that glucose to xylose ratio influence H2 and as well as VFA production. An optimum cumulative H2 production of 1900 ml for 5 g L−1 substrate was noticed with fermentation medium supplemented with glucose to xylose ratio of 2:3 at pH 6. Overall, biohydrogen producing microbial consortia developed from buffalo dung could be more effective for H2 production from lignocellulosic hydrolysates however; maintenance of glucose to xylose ratio, inoculum concentration and medium pH would be essential requirements.  相似文献   

2.
The mushroom bag is a polypropylene bag stuffed with wood flour and bacterial nutrients. After being used for growing mushroom for one to two weeks this bag becomes mushroom cultivation waste (MCW). About 150 million bags (80,000 tons) of MCW are produced annually in Taiwan and are usually burned or discarded. The cellulosic materials and nutrients in MCW could be used as the feedstock and nutrients for anaerobic biohydrogen fermentation. This study aims to select the inoculum from various waste sludges (sewage sludge I, sewage sludge II, cow dung and pig slurry) with or without adding any extra nutrients. A batch test was operated at a MCW concentration of 20 g COD/L, temperature 55 °C and an initial cultivation pH of 8. The results show that extra nutrient addition inhibited hydrogen production rate (HPR) and hydrogen production yield (HY) when using cow dung and pig slurry seeds. However, nutrient addition enhanced the HPR and HY in case of using sewage sludge inoculum and without inoculum. This related to the inhibition caused by high nutrient concentration (such as nitrogen) in cow dung and pig slurry. Peak HY of 0.73 mmol H2/g TVS was obtained with no inoculum and nutrient addition. However, peak HPR and specific hydrogen production rate (SHPR) of 10.11 mmol H2/L/d and 2.02 mmol H2/g VSS/d, respectively, were obtained by using cow dung inoculum without any extra nutrient addition.  相似文献   

3.
The influence of different pretreatment methods on anaerobic mixed inoculum was evaluated for selectively enriching the hydrogen (H2) producing mixed culture using glucose as the substrate. The efficiency of H2 yield and the glucose fermentation pathway were found to be dependent on the type of pretreatment procedure adopted on the parent inoculum. The H2 yield could be increased by appropriate pretreatment methods including the use of heat, alkaline or acidic conditions. Heat pretreatment of the inoculum for 30 min at 80 °C increased the H2 yield to 53.20% more than the control.When the inoculum was heat-pretreated at 80 °C and 90 °C, the glucose degraded via ethanol (HEt) and butric acid (HBu) fermentation pathways. The degradation pathways shifted to HEt and propionate (HPr) types as the heat pretreatment temperature increased to 100 °C. When the inoculum was alkali- or acid-pretreated, the fermentation pathway shifted from glucose to a combination of the HPr and HBu types. This trend became obvious as the acidity increased. As the fermentation pathway shift from the HEt type to the HPr and HBu types, the H2 yield decreased.  相似文献   

4.
Beer lees are the main by-product of the brewing industry. Biohydrogen production from beer lees using anaerobic mixed bacteria was investigated in this study, and the effects of acidic pretreatment, initial pH value and ferrous iron concentration on hydrogen production were studied at 35 °C in batch experiments. The hydrogen yield was significantly enhanced by optimizing environmental factors such as hydrochloric acid (HCl) pretreatment of substrate, initial pH value and ferrous iron concentration. The optimal environmental factors of substrate pretreated with 2% HCl, pH = 7.0 and 113.67 mg/l Fe2+ were observed. A maximum cumulative hydrogen yield of 53.03 ml/g-dry beer lees was achieved, which was approximately 17-fold greater than that in raw beer lees. In addition, the degradation efficiency of the total reducing sugar, and the contents of hemicellulose, cellulose, lignin and metabolites are presented, which showed a strong dependence on the environmental factors.  相似文献   

5.
The effect of different food to microorganism ratios (F/M) (1–10) on the hydrogen production from the anaerobic batch fermentation of mixed food waste was studied at two temperatures, 35 ± 2 °C and 50 ± 2 °C. Anaerobic sludge taken from anaerobic reactors was used as inoculum. It was found that hydrogen was produced mainly during the first 44 h of fermentation. The F/M between 7 and 10 was found to be appropriate for hydrogen production via thermophilic fermentation with the highest yield of 57 ml-H2/g VS at an F/M of 7. Under mesophilic conditions, hydrogen was produced at a lower level and in a narrower range of F/Ms, with the highest yield of 39 ml-H2/g VS at the F/M of 6. A modified Gompertz equation adequately (R2 > 0.946) described the cumulative hydrogen production yields. This study provides a novel strategy for controlling the conditions for production of hydrogen from food waste via anaerobic fermentation.  相似文献   

6.
The effect of different additive ammonia (0–10 g/l as nitrogen) on hydrogen production from the anaerobic batch mesophilic fermentation of food waste was studied at two feed-to-microorganism ratios (F/M), 3.9 and 8.0. Anaerobic sludge taken from an anaerobic digester was used as inoculum. The hydrogen yield at F/M 3.9 and 8.0 without additive ammonia was 77.2 and 51.0 ml-H2/gVS, respectively. At F/M 3.9, the hydrogen production was enhanced by adding additive ammonia in the system when the total ammonia nitrogen (TAN) concentration was no higher than 6.0 g/l. A maximum hydrogen yield of 121.4 ml-H2/gVS was obtained at a TAN concentration of 3.5 g/l. At F/M 8.0, the enhancement of hydrogen production was found in a narrower range of additive TAN concentrations, with a highest yield of 60.9 ml-H2/gVS at the TAN of 1.5 g/l. Hydrogen production was inhibited at higher additive TAN concentrations for both F/M ratios. This study provides a novel strategy for controlling ammonia for production of hydrogen from food waste via anaerobic fermentation.  相似文献   

7.
Leaves are one of the main by-products of forestry. In this study, batch experiments were carried out to convert poplar leaves pretreated by different methods into hydrogen using anaerobic mixed bacteria at 35 °C. The effects of acid (HCl), alkaline (NaOH) and enzymatic (Viscozyme L, a mixture of arabanase, cellulase, β-glucanase, hemicellulase and xylanase) pretreatments on the saccharification of poplar leaves were studied. Furthermore, the effects of acid and enzymatic pretreatment on hydrogen production, together with their corresponding degradation efficiencies for the total reducing sugar (TRS) and metabolites were compared. A maximum cumulative hydrogen yield of 44.92 mL/g-dry poplar leaves was achieved from substrate pretreated with 2% Vicozyme L, which was approximately 3-fold greater than that in raw substrate and 1.34-fold greater than that from substrate pretreated with 4% HCl. The results show that enzymatic pretreatment is an effective method for enhancing the hydrogen yield from poplar leaves.  相似文献   

8.
Biohydrogen production from corncob using natural anaerobic microflora was reported for the first time. The optimum pretreatment condition for the corncob was determined to be 100 °C, 30 min, and 1% HCl (w/w). The maximum hydrogen yield of 107.9 ml/g-TVS and hydrogen production rate of 4.20 ml/g-TVS h−1 was obtained under the condition of 10 g/l substrate concentration and initial pH 8.0. Butyrate and acetate were the dominant metabolic by-products of hydrogen fermentation. Chemical composition analysis, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were used to study the mechanism of degrading corncob for hydrogen production. The amorphous domains of cellulose and hemicellulose were hydrolyzed into fermentable saccharides through acid pretreatment and the microorganisms had a devastating effect on the crystallinity of the cellulose. The hydrogen yield from pretreated corncob was much higher than from raw corncob. Therefore, the acid pretreatment played a crucial role on hydrogen production from corncob.  相似文献   

9.
Hydrogen (H2) production from simulated cheese processing wastewater via anaerobic fermentation was conducted using mixed microbial communities under mesophilic conditions. In batch H2 fermentation experiments H2 yields of 8 and 10 mM/g COD fed were achieved at food-to-microorganism (F/M)(F/M) ratios of 1.0 and 1.5, respectively. Butyric, acetic, propionic, and valeric acids were the major volatile fatty acids (VFA) produced in the fermentation process. Continuous H2 fermentation experiments were also performed using a completely mixed reactor (CSTR). The pH of the bioreactor was controlled in a range of 4.0–5.0 by addition of carbonate in the feed material. Maximum H2 yields were between 1.8 and 2.3 mM/g COD fed for the loading rates (LRs) tested with a hydraulic retention time (HRT) of 24 h. Occasionally CH4 was produced in the biogas with concurrent reductions in H2 production; however, continuous H2 production was achieved for over 3 weeks at each LR. The 16S rDNA analysis of DNA extracted from the bioreactors during periods of high H2 production revealed that more than 50% of the bacteria present were members of the genus Lactobacillus and about 5% were Clostridia. When H2 production in the bioreactors decreased concurrent reductions in the genus Lactobacillus were also observed. Therefore, the microbial populations in the bioreactors were closely related to the conditions and performance of the bioreactors.  相似文献   

10.
In this study, one macro-alga (Laminaria japonica) was used for fermentative hydrogen production by anaerobic mixed bacteria. The saccharification efficiency and hydrogen production by L. japonica with four different pretreatment methods, including heat, acid, alkaline and ultrasonic treatment, were investigated. The results showed that the saccharification efficiency from L. japonica that was pretreated with acid was the highest among the four methods. The saccharification efficiency for the total reducing sugars in the acid-pretreated L. japonica was 350.54 ± 19.89 mg/g (mean ± S.E.). The cumulative hydrogen production was 66.68 ± 5.68 mL/g from the heat-pretreated L. japonica, whereas that of L. japonica that was subjected to acid, alkaline, and ultrasonic pretreatment and the control was 43.65 ± 6.87 mL/g, 15.00 ± 3.89 mL/g, 23.56 ± 4.56 mL/g and 10.00 ± 1.21 mL/g, respectively. In addition, the effects of substrate concentration and initial pH on hydrogen production from heat-pretreated L. japonica were also analyzed. The results showed that the maximum hydrogen production was 83.45 ± 6.96 mL/g with a hydrogen concentration of approximately 28.4% from heat-pretreated L. japonica when the initial pH and substrate concentration were determined to be 6.0 and 2%, respectively. Heat pretreatment was the most effective method for increasing fermentative hydrogen production when L. japonica was used as the only substrate.  相似文献   

11.
Thermotolerant consortia were obtained by heat-shock treatment on seed sludge from palm oil mill. Effect of the initial pH (4.5–6.5) on fermentative hydrogen production palm oil mill effluent (POME) showed the optimum pH at 6.0, with the maximum hydrogen production potential of 702.52 mL/L-POME, production rate of 74.54 mL/L/h. Nutrients optimization was investigated by response surface methodology with central composite design (CCD). The optimum nutrients contained 0.25 g urea/L, 0.02 g Na2HPO4/L and 0.36 g FeSO4·7H2O/L, giving the predicted value of hydrogen production of 1075 mL/L-POME. Validation experiment revealed the actual hydrogen production of 968 mL/L-POME. Studies on the effect of temperature (25–55 °C) revealed that the maximum hydrogen production potential (985.3 mL/L-POME), hydrogen production rate (75.99 mL/L/h) and hydrogen yield (27.09 mL/g COD) were achieved at 55, 45 and 37 °C, respectively. Corresponding microbial community determined by the DGGE profile demonstrated that Clostridium spp. was the dominant species. Clostridium paraputrificum was the only dominant bacterium presented in all temperatures tested, indicating that the strain was thermotolerant.  相似文献   

12.
The microbial community structure of thermophilic mixed culture sludge used for biohydrogen production from palm oil mill effluent was analyzed by fluorescence in situ hybridization (FISH) and 16S rRNA gene clone library techniques. The hydrogen-producing bacteria were isolated and their ability to produce hydrogen was confirmed. The microbial community was dominated by Thermoanaerobacterium species (∼66%). The remaining microorganisms belonged to Clostridium and Desulfotomaculum spp. (∼28% and ∼6%, respectively). Three hydrogen-producing strains, namely HPB-1, HPB-2, and HPB-3, were isolated. 16S rRNA gene sequence analysis of HPB-1 and HPB-2 revealed a high similarity to Thermoanaerobacterium thermosaccharolyticum (98.6% and 99.0%, respectively). The Thermoanaerobacterium HPB-2 strain was a promising candidate for thermophilic fermentative hydrogen production with a hydrogen yield of 2.53 mol H2 mol−1hexose from organic waste and wastewater containing a mixture of hexose and pentose sugars. Thermoanaerobacterium species play a major role in thermophilic hydrogen production as confirmed both by molecular and cultivation-based analyses.  相似文献   

13.
A start-up study of lab-scale up-flow anaerobic sludge blanket fixed-film reactor (UASFF) was conducted to produce biohydrogen from palm oil mill effluent (POME). The reactor was fed with POME at different hydraulic retention time (HRT) and organic loading rate (OLR) to obtain the optimum fermentation time for maximum hydrogen yield (HY). The results showed the HY, volumetric hydrogen production rate (VHPR), and COD removal of 0.5–1.1 L H2/g CODconsumed, 1.98–4.1 L H2 L?1 day?1, and 33.4–38.5%, respectively. The characteristic study on POME particles was analyzed by particle size distribution (PSD), Scanning electron microscopy (SEM), and Energy-dispersive X-ray spectroscopy (EDX). The microbial Shannon and Simpson diversity indices and Principal Component Analysis assessed the alpha and beta diversity, respectively. The results indicated the change of bacterial community diversity over the operation, in which Clostridium sensu stricto 1 and Lactobacillus species were contributed to hydrogen fermentation.  相似文献   

14.
pH is considered as one of the most important factors governing the hydrogen fermentation process. In this project, five pH levels, ranging from 4.4 to 5.6 at 0.3 increments, were tested to evaluate the pH effect on hydrogen production from swine manure supplemented with glucose in an anaerobic sequencing batch reactor system with 16 h of hydraulic retention time (HRT). The optimal hydrogen yield (1.50 mol H2/mol glucose) was achieved at pH 5.0 when the maximum production rate of 2.25 L/d/L was obtained. Continuous hydrogen production was achieved for over 3 weeks for pH 5.0, 4.7, and 4.4, with no significant methane produced. However, as pH increased to 5.3 and 5.6, methane production was observed in the biogas with concurrent reductions in hydrogen production, indicating that methanogens could become increasingly activated for pH 5.3 or higher. Acetate, propionate, butyrate, valerate, and ethanol were the main aqueous products whose distribution was significantly affected by pH as well.  相似文献   

15.
Substrate bioavailabity is one of the critical factors that determine the relative biohydrogen (bioH2) yield in fermentative hydrogen production and bioelectricity output in a microbial fuel cell (MFC). In the present undertaking, batch bioH2 production and MFC-based biolectricity generation from ultrasonically pretreated palm oil mill effluent (POME) were investigated using heat-pretreated anaerobic sludge as seed inoculum. Maximum bioH2 production (0.7 mmol H2/g COD) and COD removal (65%) was achieved at pH 7, for POME which was ultrasonically pretreated at a dose of 195 J/mL. Maximum value for bioH2 productivity and COD removal at this sonication dose was higher by 38% and 20%, respectively, than unsonicated treatments. In batch MFC experiments, the same ultrasound dose led to reduced lag-time in bioelectricity generation with concomitant 25% increase in bioelectricity output (18.3 W/m3) and an increase of COD removal from 30% to 54%, as compared to controls. Quantitative polymerase chain reaction (qPCR) tests on sludge samples from batch bioH2 production reflected an abundance of gene fragments coding for both clostridial and thermoanaerobacterial [FeFe]-hydrogenase. Fluorescence in situ hybridization (FISH) tests on sludge from MFC experiments showed Clostridium spp. and Thermoanaerobacterium spp. as the dominant microflora. Results suggest the potential of ultrasonicated POME as sustainable feedstock for dark fermentation-based bioH2 production and MFC-based bioelectricity generation.  相似文献   

16.
The role of different chemical and physical factors in enhancing biohydrogen production from xylose using a mixed anaerobic culture was examined under mesophilic conditions. A fractional factorial design (FFD) 3(k–p) was used to optimize pH, the oleic acid (OA) concentration and the biomass concentration. The FFD analysis indicated that the hydrogen (H2) yield was affected by 3 single factors as well as by 2 factor interactions. Under optimum conditions (1600 mg L−1 of oleic acid (OA) and 1900 mg L−1 VSS and pH 6.7), the H2 yield reached 2.64 ± 0.12 mol mol−1 of xylose (80% of the theoretical yield). Based on the ANOVA and Pareto chart analysis, the linear and quadratic OA and pH terms were significant and the linear and quadratic VSS terms were insignificant. Normally distribution of the residuals was confirmed from the Anderson-Darling (AD) plot. The studentized residuals versus the predicted values plot clearly demonstrated that the data points were randomly scattered.  相似文献   

17.
In this study the effect of different buffering agents, pH control and N2 sparging on biohydrogen production in Thermobrachium celere was investigated in batch cultivations. Among the tested buffers, none was able to prevent the medium acidification resulting in a premature interruption of the hydrogen production. Controlling the pH helped to sustain the growth, the complete substrate consumption and the H2 production. However, in these conditions the increase of H2 partial pressure induced a partial metabolic shift towards ethanol production resulting in a decreased H2 yield. Analysis of formate accumulation during growth suggests that this compound might play a relevant role in the anabolic routes in T. celere. When frequent N2 sparging was applied for H2 removal, together with pH control, the H2 yield was remarkably enhanced from 2.26 to 3.53 mol H2/mol glucose, and the maximum H2 production rate and specific H2 production rate reached 41.5 mmol H2/l/h and 142.3 mmol H2/h/g, respectively. This result suggests that under proper conditions T. celere is able to produce hydrogen at high yield and production rate.  相似文献   

18.
The effect of two different inoculum pretreatments, thermal and cell wash-out (A1 and A2, respectively) on the performance of anaerobic fluidized bed reactors for hydrogen production was determined. The reactors were operated for 112 days under the same operational conditions using glucose as substrate at increasing organic loading rates and decreasing hydraulic retention times. Both treatments were effective avoiding methanogenesis. Reactor A2 showed better performance and stability than reactor A1 in each one of the different operational conditions. Cell wash-out treatment produced higher hydrogen volumetric production rates and yields than thermal treatment (7 L H2/L-d, 3.5 mol H2/mol hexose, respectively). DGGE analysis revealed that the microbial communities developed were affected by the inoculum treatment. Organisms from the genera Clostridium and Lactobacillus predominated in both reactors, with their relative abundances linked to hydrogen production. Resilience was observed in both reactors after a period of starvation.  相似文献   

19.
We evaluated the production of bioH2 from Cassava Processing Wastewater (CPW) using three microbial consortia (Vac, Esg, and Lod) from different Brazilian environments. These consortia consisted of bacteria of the genera Clostridium, Sporanaerobacter, Coprococcus, Enterococcus, and others. The CPW was supplemented with nitrogen and used raw or hydrolyzed and sterilized or not. Four independent variables were optimized (Box-Behnken design): pH, temperature, C/N ratio, and inoculum ratio. Three quadratic models were obtained and explain production of bioH2 (R2 of 0.93, 0.87 and 0.82 for the consortia Vac, Esg and Lod, respectively). The quadratic effects were the most significant in comparison to linear effects and interactions. The optimal conditions were: pH: 5.5–7.0; temperature 37-39 °C; inoculum ratio 15%, and C/N ratio 5-3,5. After 48 h, the maximum yields of hydrogen obtained with hydrolyzed and sterilized CPW were 1.82, 1.7 and 1.68 mols of H2/mol of maltose for Lod, Esg and Vac, respectively. While, for the only sterilized substrate the yields are in the range 1.33–1.54 mol H2/mol maltose.  相似文献   

20.
Sago wastewater (SWW) causes pollution to the environment due to its high organic content. Annually, about 2.5 million tons of SWW is produced in Malaysia. In this study, the potential of SWW as a substrate for biohydrogen production by Enterobacter aerogenes (E. aerogenes) was evaluated. Response Surface Methodology (RSM) was employed to find the optimum conditions. From preliminary optimization, it was found that the most significant factors were yeast extract, temperature, and inoculum size. According to Face Centered Central Composite Design (FCCCD), the maximum hydrogen concentration and yield were 630.67 μmol/L and 7.42 mmol H2/mol glucose, respectively, which is obtained from the sample supplemented with 4.8 g/L yeast extract concentration, 5% inoculum, and incubated at the temperature of 31 °C. Cumulative hydrogen production curve fitted by the modified Gompertz equation suggested that Hmax, Rmax, and λ from this study were 15.10 mL, 2.18 mL/h, and 9.84 h, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号