首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《特殊钢》2017,(1)
4.28%~5.02%C,0.19%~0.24%V铁水经提钒后的半钢成分为3.30%~3.80%C,≤0.037%V。"留渣+双渣"法为留上一炉渣,兑入提钒半钢和50~70 kg/t废钢加入石灰和白云石进行吹炼5~6 min,倒渣,并加入适量石灰和白云石继续吹炼至终点。结果表明,吹炼前期随着炉渣碱度或温度的增加,钢水脱磷率先增加后降低,而随着渣中(FeO)增加脱磷率先增加后稳定,前期最佳控制条件为炉渣碱度3.0~3.5,(FeO)10.0%~15.0%,倒渣温度1 480~1 510℃;转炉吹炼后期,随着炉渣碱度的增加脱磷率升高,而随着温度的增加脱磷率降低,(FeO)对脱磷率的影响与前期较为相近,转炉吹炼终点控制碱度3.5~4.0,(FeO)8.0%~10.0%,温度≤1630℃为宜,脱磷率在90.0%以上;此工艺可将钢水终点[P]控制在0.015%以内,满足低磷钢冶炼的需求。  相似文献   

2.
王星  胡显堂  危尚好  周冬升  王东  刘敏 《钢铁》2022,57(11):53-63
 转炉具备冶炼低磷钢的生产能力,但生产超低磷9Ni钢,转炉脱磷工艺仍然是主要难点和研究重点。分析了钢水温度、炉渣碱度、FeO和渣量等对转炉脱磷的影响规律,并结合现场工装设备条件,对转炉双联法、三渣法、双渣法3种脱磷模式进行试验对比。双联脱磷工艺半钢温降大、单炉周期长、生产组织难度大,三渣法操作过程复杂、终点磷控制优势不明显。双渣法冶炼周期短,通过优化转炉脱磷工艺,实现了采用双渣法冶炼工艺生产超低磷钢,简化了超低磷钢转炉冶炼流程,提高了生产效率。研究了转炉脱磷主要工艺参数,分析得出采用脱碳氧枪喷头时,供氧流量按脱碳吹炼流量的83.5%控制,可达到良好的脱磷效果并减少铁水碳的烧损;脱磷期半钢碳含量不宜控制过低,半钢碳质量分数为3.0%~3.5%时能保证前期的脱磷效果和脱碳期的热量。脱磷期温度控制在1 300~1 350 ℃,脱磷率较高也有利于炉渣熔化。炉渣碱度为1.8~2.2时,可保证较高的脱磷率和化渣效果。一次倒渣量40%以上,脱碳期终点温度按1 590~1 610 ℃控制,终渣FeO质量分数不小于20%,终渣碱度大于6,转炉终点磷质量分数可降低到0.002%以下。采用下渣检测系统和滑板挡渣操作,严格控制下渣量,出钢采用磷含量低的合金,炉后钢水增磷可控制在小于0.000 5%。通过工业试验,实现了铸机成品磷质量分数小于0.002%。  相似文献   

3.
在高废钢比冶炼条件下,为了改善转炉终点钢液磷含量过高的问题,采用65 t顶底复吹转炉,结合脱磷热力学理论,系统分析研究了入炉铁水和终点条件对转炉脱磷的影响。结果表明,最佳的入炉铁水和终点脱磷条件为:当铁水温度、Si含量、终渣碱度、FeO和MnO分别控制在1 300~1 360℃、0.55%~0.65%、≥2.6、16%~22%和2.5%~4.0%时,可以顺利实现终点钢液磷含量在0.015 0%以下。  相似文献   

4.
天津钢铁集团有限公司开发了"留渣+双渣"脱磷工艺,通过转炉冶炼出钢结束后留渣和前期脱磷的有利条件实现高效去磷,在冶炼中途进行倒渣以减少熔池的磷含量,最终实现少渣炼钢的目的。制定了该工艺的关键控制点并形成相关的操作规范,采用强底吹模式,控制前期冶炼时间、温度及碱度等因素,成功将前期的脱磷率提升至60%以上,而吨钢石灰消耗降低至24 kg。  相似文献   

5.
通过工业试验研究120 t顶底复吹转炉双渣法脱磷一次倒渣时的供氧制度、枪位控制和一次倒渣条件对脱磷的影响。结果表明最佳的一次倒渣工艺条件为:一倒吹氧时间和吹氧量应分别控制在390~420 s和2 300~2 400m~3;一倒温度、碱度、FeO以及P_2O_5含量分别控制为1 400~1 420℃、≥2.06、≥10.97%和2.54%~3.0%时,可以实现一倒钢液磷含量最低为0.032%,脱磷率最高为75.57%。  相似文献   

6.
摘要:在国内某转炉钢厂采用“留渣 双渣”工艺技术进行脱磷工艺试验。结果表明:随着转炉前期脱磷率不断升高,终点脱磷率不断提高。铁水硅含量对前期脱磷率的影响最大。根据铁水成分,在冶炼前期适当降低供氧强度、降低气固氧比、加入适量石灰及烧结矿,均有利于前期脱磷率的提高。在一倒时每吨钢液加入4~8kg石灰,不影响出钢温度,可提高一倒-终点阶段脱磷率,同时可提高终点脱磷率。从终点的控制效果可知,终点炉渣碱度应保持不小于3.0,炉渣中FeO质量分数在16%~20%,并适当降低终点出钢温度在1610~1630℃,有利于终点脱磷率的提高。通过加强熔池搅拌,促进钢渣反应趋于平衡,有利于终点磷分配比提高,从而可进一步提高终点脱磷率。  相似文献   

7.
 为了研究在转炉冶炼中高FeO转炉渣条件下钢液的脱磷行为,采用双联法在某钢厂300 t脱磷转炉上展开高氧化性转炉渣脱磷工业试验。通过理论分析并结合XRD、拉曼光谱分析等手段,研究了脱磷温度、转炉渣矿相结构以及终渣成分等因素对高FeO转炉渣条件下钢液的脱磷的影响。通过热力学公式计算发现,脱磷转炉最佳理论脱磷温度约为1 675 K。对比分析了不同脱磷效果的转炉渣的矿相结构,结果表明,2CaO·SiO2和3CaO·P2O5矿相结构有利于脱磷反应的进行,3CaO·SiO2对脱磷效果的影响不明显;Si—O—Si键和[FeO4]键特征峰面积越大,Q0和Q2单元特征峰面积越小,脱磷效果越好。最后研究了脱磷炉钢液脱磷率≥60%时终渣成分的最佳控制工艺参数,碱度R为1.05~1.30,w([FeO])为33%~37%,w([MgO])≤3.0%,w([MnO])为4.3%~5.4%。本研究可以为钢铁企业采用双联法开发超低磷钢提供理论依据和技术指导。  相似文献   

8.
唐钢公司二钢轧厂利用55 t顶底复吹转炉研究了双渣操作对脱磷效果的影响。试验结果表明,采用双渣法可以将脱磷率由单渣法的87.8%提高到92.6%,终点钢水磷含量低至0.008 1%;采用双渣法留渣冶炼有利于提高前期炉渣中FeO含量和碱度,从而有利于脱磷,可将脱磷率提高到95.2%,终点钢水磷含量降低至0.005 5%。脱磷率随着吹氧时间和供氧量的增加而升高,增加总吹氧时间或者总供氧量有利于改善化渣效果。另外,增加总吹氧时间或者总供氧量也延长了脱磷时间,最终提高了脱磷效果。  相似文献   

9.
任茂勇 《天津冶金》2012,(4):1-3,60
磷在钢中作为一种有害元素,必须在冶炼过程中将其去除。脱磷是转炉冶炼最重要的任务之一。低磷钢的冶炼对转炉冶炼工艺提出了更为严格的要求。在理论分析的基础之上,通过对实际生产中数据的汇总,分析了温度、炉渣碱度、碳含量炉渣氧化性、留渣操作及双渣操作等因素对转炉脱磷效果的影响,为提高天钢转炉的脱磷效果提供了参考。结果表明,保持相对较低的熔池温度、造高碱度的炉渣、保持一定的炉渣氧化性以及留渣和双渣操作等,都有利于脱磷反应的进行。  相似文献   

10.
为了提出适合南钢的操作原则和控制目标,根据转炉脱磷反应基本热力学原理和复吹转炉双渣脱磷工艺特点,针对南钢铁水条件,分析了铁水硅含量、温度、磷含量对脱磷的影响并提出合理的冶炼方案.南钢120t复吹转炉双渣深脱磷工艺实践表明,通过优化造渣、供氧、一次倒渣及终点控制等工艺操作,能取得转炉终点钢液磷的质量分数 ≤ 40×10-6和脱磷率达97.3%的脱磷效果.按照优化后的方案进行冶炼能满足南钢超低磷钢的生产需要.  相似文献   

11.
在统计分析了转炉前期炉渣碱度和钢水温度,终点炉渣碱度、终渣全铁含量和终点钢水温度对脱磷率影响的基础上,优化了0.29%Si,0.085%P铁水180t复吹转炉的高磷钢冶炼工艺。200炉冶炼结果表明,通过使用低枪位使钢水快速脱碳升温,控制前期炉渣碱度≥2.2、终点炉渣碱度2.8~3.2,终点炉渣全铁含量≤17%,转炉出钢温度1 650~1 680℃,可控制脱磷率≤60%,终点钢水磷含量均值为0.035%。  相似文献   

12.
赵东伟  李海波  孙亮  张勇 《钢铁》2016,51(8):24-28
 基于CaO-SiO2-FeO-10%MgO渣系,从热力学角度对渣钢界面的脱磷行为进行分析,归纳出磷分配比与钢液温度、碳质量分数以及炉渣成分间的表达式,并在此基础上绘制出了CaO-SiO2-FeO-10%MgO渣系的等磷分配比线,同时分析了转炉终渣氧化性、碱度以及温度对磷分配比的影响情况。研究结果表明,转炉吹炼过程磷分配比是钢液温度、碳质量分数和炉渣成分的函数,通过与实际生产数据进行验证,发现其与实际结果吻合良好。基于该预测公式,在其他条件不变情况下,随着炉渣FeO质量分数增加,磷分配比[LP]先增加后减小,当终渣FeO质量分数为18%左右时达到最大值;随着终渣碱度的增加,渣钢间磷分配比增加,当终渣超过4.0时,磷分配比增加不再明显。  相似文献   

13.
为了更好降低钢中回磷量,结合现场试验计算得出转炉出钢至精炼结束钢水回磷量、合金及辅料带入钢液的磷含量和转炉的下渣量,检测分析了各阶段炉渣成分和温度对精炼回磷的影响。结果表明:合金回磷和下渣回磷在总回磷中占主导地位,采取使用低磷合金及减小下渣量能有效减少总回磷量。转炉终点温度控制在1 620℃左右,终渣FeO含量达到15%以上,可降低转炉出钢下渣引起的回磷。精炼过程中合理控制炉渣碱度,控制前期精炼渣FeO含量在0.25%~0.45%,可以有效抑制钢液回磷。  相似文献   

14.
结合南钢现场试验,研究了转炉采用单渣法和双渣法对钢水脱磷的影响;分析比较了不同操作制度对钢液中磷含量的影响,辅料加入量对终点钢液磷含量变化的影响,留渣操作对前期渣的影响以及对冶炼终点钢液磷含量的影响。试验结果表明,与单渣法相比,双渣法前期脱磷效果较好,形成的前期渣对脱磷较有利,冶炼终点能很好达到低磷钢要求。同时通过现场试验研究确定了冶炼低磷钢的最佳终点温度、适宜碱度和FeO含量等条件,并得出对磷含量要求严格的钢种应采用双渣法冶炼较有利。  相似文献   

15.
针对100 t转炉用含钛铁水冶炼高碳钢的前期成渣难于熔化、脱磷率低的问题,分析了含钛铁水转炉炼钢的成渣过程和炉渣的物理特性,开发了留渣+单渣工艺技术。循环利用终点炉渣,充分发挥渣中10%~13%FeO高(FeO)含量的特点,快速把含钛铁水冶炼前期的CaO-TiO2-SiO2三元渣系转变为CaO-TiO2-SiO2-FeO四元渣系,脱除钢中大部分磷。控制终渣碱度大于3.2、(TiO2)含量小于5%,使转炉出钢[C]≥0.20%、[P]≤0.014%,转炉炼钢脱磷率达到88%~92%,石灰消耗下降到28 kg/t。  相似文献   

16.
《炼钢》2015,(3)
通过对转炉冶炼过程的平衡计算及脱磷规律的研究,优化了转炉双渣工艺。实践表明:在满足钢种要求的出钢钢水成分前提下,将铁水比由84%提高到88%,转炉终点出钢温度可稳定控制在1 680℃以上;前期炉渣w(MgO)控制在6%~8%,碱度控制在1.6~1.8,终点炉渣碱度控制在3.5~4.0,转炉终点磷质量分数基本可控制在0.02%以下,达到了生产冷轧基板对转炉出钢要求温度高、磷含量低的工艺指标。  相似文献   

17.
对韶钢120 t复吹转炉双渣法冶炼低磷钢工艺进行了试验研究.结果表明,当转炉冶炼条件满足:铁水磷含量为0.13!,半钢炉渣碱度控制在2.0左右,TFe含量控制在15!左右,半钢倒渣量40!~60!的工况条件下,半钢平均脱磷率可达56!,最高达75!,冶炼终点钢水平均磷含量控制在0.011!,平均脱磷率为91.73!,满足了低磷钢生产要求.  相似文献   

18.
通过对转炉脱磷和碳-磷选择性氧化转变温度的理论分析和计算,在铁水未经脱磷预处理的条件下,进行120 t顶底复吹转炉双渣脱磷生产实践。当铁水平均成分为(/%):4.81C、0.49Si、0.32Mn、0.127P、0.019S的情况下,在转炉冶炼前期(0~360 s),采用低温(1 330~1 350℃),较强底吹搅拌[0.030~0.040 m~3/(t·min)],中等炉渣碱度(2.0~3.0)和高氧化铁(20%~25%)工艺措施,实现一次倒渣的半钢(3.8%C)平均磷含量0.048%和平均脱磷率62.2%的脱磷效果。  相似文献   

19.
为优化转炉冶炼工艺,对180 t顶底复吹转炉进行少渣低温高效冶炼试验,采用少渣冶炼工艺,即:兑铁→脱磷期冶炼→前期倒渣→脱碳期冶炼→终点出钢,实现了前期渣碱度平均1.91,前期脱磷率平均56.25%,后期渣碱度平均3.02,终点脱磷率平均90%,过程石灰、白云石消耗分别降低30%、20%以上。冶炼前期碱度1.5~2.0,熔池温度1 350~1 400℃更有利于铁水中磷的脱除;随着出钢温度和终渣碱度的提高,钢中磷含量增加。  相似文献   

20.
主要介绍了马钢第三钢轧总厂70 t转炉炼钢双渣法脱磷工艺生产实践,实践结果表明,在脱磷阶段,控制熔渣碱度在1.5~2.0,渣中ω(FeO)含量在10%~15%,一倒温度在1400~1450℃,可以获得较好的脱磷效果;在脱碳阶段,终渣碱度控制在3.8~4.2,ω(FeO)含量控制在20%~25%,出钢温度控制在1650℃以内,脱磷率可达90%以上。采用双渣法工艺后,转炉石灰用量减少约20 kg/t钢,钢铁料消耗下降4~6 kg/t,具有良好的经济和环境效益。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号