首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
金属在载体上的分散状况,是催化研究中的一个重要问题。本文着重介绍Pt/Al_2O_3催化剂金属分散度的H_2-O_2滴定法测定。按照化学计量式:给出了Pt分散度R,此表面S,和晶粒大小d的计算公式。在流动态装置和室温条件下,各种类型Pt催化剂化学吸附氧的气体氢脉冲滴定结果表明,浸渍法催化剂Pt晶粒大小在10(?)左右,共胶法催化剂在17—25■之间,与文献上静态法氢吸附数据良好一致。方法的测定误差在±5%以内。  相似文献   

2.
CeO_2修饰的Pt/SiC催化剂催化CO氧化反应的性能   总被引:3,自引:2,他引:1  
以SiC为载体,采用等体积浸渍法制备了Pt质量分数为1%的Pt/CeO2/SiC催化剂,采用X射线衍射、程序升温还原和CO化学吸附法对催化剂进行了表征。考察了CeO2添加量、焙烧温度、预还原温度等对Pt/CeO2/SiC催化剂催化CO氧化反应性能的影响。实验结果表明,添加助剂CeO2可显著提高催化剂表面活性组分Pt的分散度,且CeO2与Pt产生一定的相互作用,使催化剂活性显著提高;当Pt/CeO2/SiC催化剂中CeO2的质量分数为8%时,催化剂活性最高,CO的最低完全转化温度比Pt/SiC催化剂约低100℃;Pt/CeO2/SiC催化剂的最佳焙烧温度为500℃,最佳预还原温度为200℃。  相似文献   

3.
负载型纳米Pt催化剂的制备及其催化合成对氨基苯酚   总被引:3,自引:1,他引:2  
针对硝基苯加氢合成对氨基苯酚(PAP)反应,于反相微乳液体系中,采用重新分散沉积负载法和改进的微乳-溶胶凝胶负载法制备了不同Pt粒径的Pt/SiO2催化剂,考察了Pt粒径对反应活性及选择性的影响。实验结果表明,采用改进的微乳-溶胶凝胶负载法制备的Pt/SiO2催化剂,Pt粒子在载体表面分散得更均匀,且粒径较小。在Pt/SiO2催化剂制备过程中加入一定量的草酸及改变H2PtCl6溶液浓度,均对Pt粒径有一定的调控作用。以制备的不同Pt粒径的Pt/SiO2为加氢反应催化剂、以S2O82-/ZrO2固体酸为重排反应催化剂进行硝基苯加氢合成PAP反应。实验结果表明,随Pt粒径的减小,硝基苯转化率及PAP的选择性均明显提高,当Pt粒径为5.1nm时,PAP的选择性最高,为48.5%。  相似文献   

4.
分别以Y-β复合分子筛、Y和β的机械混合物、Y、β为载体,制备了Pt系加氢异构催化剂Pt/Y-β、Pt/Y+β、Pt/Y、Pt/β.采用XRD、N2等温吸附-脱附、FT-IR等分析手段进行表征,探讨了其物化性能的差异,并采用固定床反应器考察了上述催化剂对正辛烷加氢异构化反应的催化性能.结果表明,与Pt/Y+β相比,催化剂Pt/Y-β具有较高的相对结晶度、较大的比表面积和孔体积、较高的B酸和L酸,为正碳离子发生骨架异构化和裂化反应提供了条件.230℃时,在Pt系催化剂催化正辛烷加氢异构化反应中,按正辛烷转化率高低排列的催化剂顺序为Pt/Y-βPt/βPt/YPt/Y+β;按裂解率高低排列的催化剂顺序为Pt/βPt/Y-βPt/Y+βPt/Y;按液体收率高低排列的顺序与裂解率的排列相反,按异辛烷产率高低排列的催化剂顺序为Pt/Y-βPt/YPt/βPt/Y+β,其中,Pt/Y-β催化剂上单、双支链异辛烷产率分别于230、240℃取得最大值,分别为27.97%,12.54%,明显高于其它催化剂.以双微孔复合分子筛Y-β为载体制备的异构化催化剂Pt/Y-β是具有双重结构的催化剂,具有酸性功能的可调变性、孔道的非单一性,将成为石油加工和石油化学品深加工的新型催化材料.  相似文献   

5.
结合溶胶凝胶法和化学还原法制备了负载型Pt纳米簇-Sn丙烷脱氢催化剂。基于催化剂的活性评价和BET、XRD、吡啶吸附红外光谱、TG等表征结果考察了载体干燥时间、制备方法、助剂Sn等对Pt纳米簇催化剂催化性能的影响。结果表明,当m(聚乙烯基吡咯烷酮):m(Pt)=30:1,浸渍时间8 h,负载型Pt/SiO_2催化剂表现出较好的催化性能;Sn助剂的添加对Pt/SiO_2催化剂的反应性能影响显著,添加适量Sn不仅增加了催化剂中的Brφnsted酸中心和Lewis酸中心,而且显著抑制了催化剂上的积碳,明显改善了催化剂的稳定性和催化活性。反应30 h后催化剂[N(Sn):N(Pt)=25]的丙烷转化率和丙烯选择性仍分别稳定在18.8%和93%。  相似文献   

6.
丙烷脱氢技术是增产丙烯的重要手段,目前以Pt系催化剂为基础的研究工作得到了广泛关注。但Pt系催化剂的稳定性问题是目前面临的关键问题,阻碍了进一步工业规模的发展。从助剂、载体、制备方法和再生条件等方面综述了国内外对于丙烷脱氢Pt系催化剂稳定性的研究进展。  相似文献   

7.
以加氢裂化尾油为原料,考察了Pt负载方式、前驱体溶液pH、Pt负载量对异构化催化剂Pt/ZSM-22-γ-Al2O3的影响。结果表明,成型后离子交换法制备的催化剂Pt分散度最高。催化剂异构化选择性及反应活性顺序由高到低的顺序为:成型后离子交换法>分子筛离子交换法>等体积浸渍法。成型后离子交换的前驱体溶液pH为9时,Pt分散度为87.2%。Pt负载量(w)为0.3%时,150N基础油倾点为-15℃的基础油收率为75.8%。异构化选择性达到最佳。  相似文献   

8.
采用Hummers法制备了氧化石墨烯(GO),制备过程中分别采用了冷冻干燥和常规干燥(干燥温度分别为60℃和100℃),制得的GO分别记为GO-LT,GO-60,GO-100,并利用乙二醇还原法制备了Pt/rGO(rGO为还原GO)催化剂。采用XRD,FTIR,AFM,XPS,H2-TPR等方法对GO和Pt/rGO进行了表征,并将催化剂用于萘加氢制十氢萘反应,考察了干燥温度对GO和Pt/rGO的结构、物化性质及Pt/rGO加氢脱芳烃催化性能的影响。实验结果表明,干燥温度升高有利于Pt纳米粒子的分散,且能够促进含氧官能团的还原,但容易使石墨层堆叠;Pt/rGO-60催化剂的Pt纳米粒子分散度高,且石墨层没有严重堆叠,因此Pt/rGO-60催化剂的活性和十氢萘选择性明显高于Pt/rGO-LT和Pt/rGO-100,实现了萘的高效深度加氢饱和。  相似文献   

9.
采用等体积浸渍法制备了一系列Pt/γ-Al_2O_3催化剂,考察了制备方法对催化剂Pt活性组分分布及催化剂催化燃烧活性的影响,并利用光学照相、ICP/MS、XRD、SEM和电子探针等分析手段对制备的催化剂进行表征。实验结果表明,浸渍液中溶剂种类和竞争吸附剂的加入对Pt活性组分在γ-Al_2O_3载体上的分布存在影响,进而影响了催化剂的催化燃烧活性;在苯的催化燃烧反应中,乙醇作为浸渍液溶剂制备的催化剂D催化活性最高,当达到相同催化效果时,该方法制备的催化剂贵金属Pt用量较低。表征结果显示,催化剂D中Pt活性组分在载体上呈蛋壳型分布,壳层厚度约为15μm。  相似文献   

10.
张立波 《石油化工》2022,(9):1102-1108
综述了近年来燃料电池有序合金催化剂的合成方法,并总结了有序合金催化剂存在的问题和未来发展前景。燃料电池有序合金催化剂的合成方法主要有热退火法、包覆物保护合成法、载体辅助退火法和湿化学法等。与商业Pt/C催化剂相比,有序合金催化剂的活性显著提高。在有序合金催化剂的制备过程中存在粒子团聚、比表面积小、批量化制备困难等问题,但由于它的性能优异以及制备方法简单得到了广泛关注。有序合金催化剂已成为有潜力的燃料电池催化剂之一,开发高活性、高稳定性和高选择性的催化剂是目前燃料电池研究的热点。  相似文献   

11.
分别采用分步浸渍法和共浸渍法制备了PtPdNi/TiVxAlOy催化剂,并考察了该催化剂在甘油氢解反应中的催化性能;采用XRD、H2-TPR、H2-O2滴定和NH3-TPD等手段对PtPdNi/TiVxAlOy催化剂和TiVxAlOy载体进行了表征。实验结果表明,采用分步浸渍法制备催化剂以及在载体中引入适量V均有利于提高Pt和Pd在载体表面的分散度,从而提高催化剂在甘油氢解反应中的催化性能;高度分散的Pt和Pd是催化剂的主催化活性中心,Ni起助催化作用,可抑制Pt和Pd与载体之间的相互作用,有利于Pt和Pd在载体表面分散;引入适量V可提高TiVxAlOy载体的酸强度,载体表面适量强酸位的存在有利用于低级醇的生成。  相似文献   

12.
燃料电池主要受限于阴极氧还原反应缓慢动力学过程的阻碍,需要大量使用Pt作为催化剂,提高Pt催化剂的催化性能和减少Pt的用量是当前燃料电池的研究热点。特殊形貌Pt催化剂具有选择性显示晶面、控制表面应变、几何受控的特点,大大提高了Pt催化剂的氧还原催化性能。从纳米维度的角度综述了目前研究的一维纳米结构、二维纳米结构和三维纳米结构特殊形貌Pt催化剂,总结了特殊形貌Pt催化剂在燃料电池中的实际应用,同时对特殊形貌Pt催化剂的研究方向和应用领域进行了展望。  相似文献   

13.
赵海英  许韵华  杨玉国  郭洪范  朱红 《石油化工》2004,33(Z1):1334-1336
研究了采用共沉还原法制备了高分散度的催化剂Pt-Pd/C.用循环伏安法考察了此催化剂的活性,并与商品的Pt/C催化剂进行比较.由循环伏安中氢的氧化脱附峰的面积,得到催化剂对氢的活性顺序是Pt/C>自制的Pt-Pd/C,而在1 mol/L甲醇的0.5 mol/L H2SO4溶液中,自制Pt-Pd/C>Pt/C.结果表明Pt-Pd/C催化剂的抗CO的能力高于PtC催化剂.  相似文献   

14.
选取工业Al_2O_3载体,采用等体积浸渍法制备Pt/Al_2O_3和Pt-Au/Al_2O_3系列催化剂,对其进行了H2-TPR,HRTEM,XPS,XRD等表征,并分别采用含2%(w)苯的正己烷和含2%(w)苯、1%(w)1-己烯的正己烷溶液为模型化合物,在小型固定床加氢反应器上对所制备的系列催化剂进行加氢活性评价。表征结果显示,Pt与Au在催化剂表面形成新的Pt-Au合金簇,而Au的加入并未影响催化剂中Pt的电子性能。实验结果表明,Au的加入提高了Pt/Al_2O_3催化剂的苯加氢活性;保持Pt负载量为0.3%(w)不变,当Au含量为0.05%(w)时,Au-Pt合金存在最佳比例,催化剂加氢活性最高。  相似文献   

15.
以含钛氢氧化铝干胶和不含钛氢氧化铝干胶作为前驱物获得载体,采用浸渍法制备出Pt/Al_2O_3-TiO_2催化剂和Pt/Al_2O_3催化剂;采用BET、XRD、TPR、TEM、氢氧滴定等方法对所制备的催化剂进行表征,以重整抽余油为原料进行烯烃和芳烃的加氢活性评价。结果表明,TiO_2在载体中以锐钛矿形式存在,Pt/Al_2O_3-TiO_2催化剂的孔体积、比表面积和强度均略小于Pt/Al_2O_3催化剂,前者更易还原,Pt的分散度更大,而且有更高的烯烃和芳烃加氢活性。  相似文献   

16.
通过浸渍法制备了Pt/Al_2O_3催化剂,以AlCl_3和CCl_4为氯化剂对制备的Pt/Al_2O_3进行两步联合氯化制得Pt/Cl-Al_2O_3低温异构化催化剂。采用X射线衍射(XRD)、程序升温脱附(TPD)、透射电镜(TEM)和吡啶红外光谱(Py-IR)等方法对氯化前后催化剂理化性质进行了表征,并以正己烷为模型化合物,对Pt/Cl-Al_2O_3催化剂在不同温度下的催化效果进行了评价。结果表明,氯化前后γ-Al_2O_3载体的晶型不发生改变;氯化后催化剂B酸酸性位增强,其比表面积、孔容有所降低,催化剂氯含量明显提高,表面酸量大大增加;Pt/Cl-Al_2O_3催化剂在体积空速1.0 h~(-1)、氢气压力3 MPa、反应温度150℃时,正己烷转化率为85.74%,2,2-二甲基丁烷选择性为28.93%。  相似文献   

17.
介绍了Pt系催化剂的载体和助剂对烷烃脱氢性能的影响。非酸性、比表面积大、热稳定性好、与Pt相互作用强的载体,有利于减少裂解反应,提高Pt的分散度和催化剂的抗烧结能力。Sn是在Pt系催化剂中应用最多的助剂,可提高Pt分散度和抗烧结能力,促进烯烃的脱附提高其选择性,促进焦炭前身物向载体迁移,减缓催化剂结焦失活。  相似文献   

18.
利用纳米Pt表面吸附的氢还原氯金酸,制备了表面修饰Au原子的纳米Pt催化剂。通过紫外-可见吸收光谱、透射电子显微镜、X射线衍射对纳米Pt催化剂进行了表征,并通过苯甲醛的催化加氢反应,对表面修饰不同量Au原子的纳米Pt催化剂的催化活性进行了评价。实验结果表明,Au原子是在纳米Pt的表面形成;当Au原子的修饰量较低时,纳米Pt催化剂的催化活性得到提高,当表面修饰的Au原子与Pt原子的摩尔比为0.08时,纳米Pt催化剂显示出最高的催化活性;而当这一比值达到0.17时,与未修饰Au原子的纳米Pt催化剂相比,增加Au原子修饰量会导致纳米Pt催化剂的催化活性降低。  相似文献   

19.
以介孔碳材料CMK-3作为载体,采用等体积浸渍焙烧还原的方法,制备不同Pt含量的负载型催化剂Pt(n)/CMK-3。采用XRD、BET、SEM、TEM等方法表征催化剂。以萘加氢反应为探针评价催化剂的催化加氢性能。结果表明,Pt(n)/CMK-3催化剂保持了CMK-3高度有序的介孔结构,Pt粒径随着其质量分数的增加而增大。当质量分数为1.5%和2.0%时,Pt粒子可均匀分散在催化剂孔道内,粒径可控制在5nm以内;当质量分数达到3%时,Pt粒子出现团聚现象,Pt粒径增大到7nm。Pt质量分数为2.0%的Pt(2.0%)/CMK-3催化剂对萘的加氢反应的催化性能最佳,萘转化率可达98%以上,十氢萘选择性大于95%。  相似文献   

20.
Pt/γ-Al2O3催化剂催化微晶纤维素转化   总被引:4,自引:2,他引:2  
以γ-Al2O3为载体,采用浸渍法制备了一系列Pt负载量不同的Pt/γ-Al2O3催化剂,研究了Pt/γ-Al2O3催化剂催化微晶纤维素转化的性能及反应机理,考察了反应温度、H2压力、搅拌转速和Pt负载量对微晶纤维素转化率的影响,并对Pt/γ-Al2O3催化剂的稳定性进行了测试。实验结果表明,微晶纤维素的转化率随反应温度、H2压力、搅拌转速和Pt负载量的增加而增加,在Pt的质量分数5.0%、温度190℃、H2压力5MPa、搅拌转速550r/min条件下,微晶纤维素转化率可达40.7%;但升高反应温度为反应提供了过高的能量,促进了副反应的发生,反应温度最好控制在200℃以下。Pt/γ-Al2O3催化剂的重复使用性较好,经4次回收利用,活性没有明显下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号