首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
天宝山矿东风选厂所处理的矿石为矽卡岩型低品位多金属硫化矿,主要有用矿物为闪锌矿、黄铜矿、方铅矿。该厂采用铜铅部分混合浮选,用硫酸锌加氰化物抑制锌,铜铅部分混合浮选精矿采用氰化法分离,混合浮选尾矿再选锌的工艺流程。近年来,随着入选矿石性质的变化,铜精矿含锌在12%左右,不仅降低了铜精矿质量,直接影响铜精矿售价,而且造成大量锌金属损失于铜精矿中。为降低铜精矿含锌,进行了选矿试验。研  相似文献   

2.
汉吉兹矿床的多金属矿石选矿工艺的制定   总被引:1,自引:0,他引:1  
乌兹别克斯坦共和国汉吉兹铜铅锌多金属矿石由于矿物嵌布粒度细,含有次生硫化铜矿物,属于难选多金属矿石.提出了铜--铅混合浮选、铜铅混合精矿分离浮选和从铜铅混合浮选尾矿中浮选闪锌矿工艺流程.在铜--铅混合浮选回路中采用硫酸锌作为闪锌矿的抑抑剂,用丁基黄药和黑药混合浮选铜和铅矿物.在铜铅混合精矿分离中,用活性炭和硫化钠及洗矿后解离矿物表面上的药剂,用硫酸将矿浆调至酸性pH,再用亚硫酸钠作为方铅矿的抑制剂,用黄药浮选硫化铜矿物.用硫酸铜活化闪锌矿,用黄药和黑药捕收剂从混合浮选尾矿中获得锌精矿.该工艺流程获得质量合格的铜精矿、铅精矿和锌精矿,铜、铅和锌的回收率分别为69.2%~72.7%,74.7%~78.5%和80%.  相似文献   

3.
论述了在分离铜 -铅 -锌混合精矿过程中通过调整锌剩余浓度和矿浆的pH值 ,达到优化锌矾 (ZnSO4·7H2 O)、氰化钠、硫化钠和苏打用量的几种新方法的制订和应用情况。试验确定了在方铅矿与闪锌矿和铜矿物、铜矿物与闪锌矿的浮选分离过程中、以及在粗选阶段被锌氰络合物抑制的铜矿物再浮选过程中最佳的锌剩余浓度和 pH值。这些新方法已在哈萨克斯坦的很多选矿厂中得到应用 ,并使这些选矿厂提高了精矿品位和金属回收率及降低药剂消耗。  相似文献   

4.
广西铜铅锌矿为典型复杂难选多金属硫化矿,黄铜矿与闪锌矿互相包裹、交代共生,在浮选分离时难以获得合格的铜精矿产品。经试验研究,采用“抑锌—浮选铜铅—铜铅分离—铜铅混合浮选尾矿选锌”工艺,以氧化钙、硫酸锌配合实验室新制的锌抑制剂CZ-002抑制闪锌矿和硫化铁矿物,实验室新合成捕收剂CY-2A浮选铜铅。最终闭路试验获得铜精矿铜品位22.48%、回收率70.11%;铅精矿铅品位57.39%、回收率84.84%;锌精矿锌品位51.93%、回收率88.42%。试验指标较好,实现了铜铅锌多金属的有效分离。  相似文献   

5.
福建某矿石为铜铅锌多金属硫化矿难选矿石,各金属矿物交代现象频繁,嵌布关系复杂。采用"铜铅锌全混合浮选—铜铅部分混合浮选—铜铅分离"的工艺,以氧化钙和碳酸钠抑制硫化铁矿物,硫化钠和硫酸锌抑制闪锌矿,FeSO_4+Na_2S_2O_3+CMC+Na_2SiO_3的组合抑制方铅矿,有效实现了铜、铅、锌硫化矿的分离。闭路流程可得铜品位为22.53%、回收率为87.23%的铜精矿,铅品位为48.62%、回收率为93.00%的铅精矿,锌品位为46.38%、回收率为91.91%的锌精矿。  相似文献   

6.
为了更好地选别回收安徽某铜银铅多金属矿,对该矿石进行了工艺矿物学研究,查明了矿石的矿物组成、主要矿物的嵌布特征及铜、银、铅元素赋存状态。结果表明:矿石铜、银、铅品位分别为0.64%、116.63 g/t、0.20%,可回收的有用矿物主要为铜矿物,银可作为伴生元素进行回收,铅品位较低,只能作为杂质脱除;矿石主要铜矿物为斑铜矿、辉铜矿和黄铜矿,常常两者或3种矿物共生嵌布并形成不规则片状,三种铜矿物集合体的嵌布粒度粗细不均,在+0.07 mm粒级的分布率为44.60%;元素Cu主要赋存在斑铜矿中,分布率为79.37%,其次分布在辉铜矿和黄铜矿中,分布率分别为9.52%和6.35%;元素Ag主要赋存在辉银矿中,元素Pb主要赋存在方铅矿中。根据工艺矿物学研究结果,斑铜矿、辉铜矿和黄铜矿是回收的主要目的矿物,辉银矿主要分布在斑铜矿或黄铜矿中,因此大多辉银矿可与铜矿物一起得到回收。由于方铅矿相对易浮,大多方铅矿也会进入铜精矿中从而影响最终精矿品级,因此建议采用浮铜抑铅浮选工艺。  相似文献   

7.
根据某复杂硫化铜铅锌矿石特性,矿石中的铜矿物大部分为黄铜矿,另有微量的辉铜矿、铜蓝等;锌矿物主要为闪锌矿;铅矿物主要为方铅矿。矿石中还含有少量磁铁矿、磁黄铁矿、黄铁矿以及毒砂、褐铁矿等其他金属矿物。脉石矿物主要为透闪石和透辉石。针对该矿石,采用铜-铅-锌全优先浮选工艺,采用矿冶科技集团自主研发的选择性铜捕收剂BK910和高效捕收剂BK906,闭路试验获得了铜品位为23.24%,铅含量为3.03%,铜回收率84.28%的铜精矿、铅品位为75.82%,铜含量为0.16%,铅回收率为82.65%的铅精矿和锌品位为52.36%,锌回收率为93.74%的锌精矿。  相似文献   

8.
某铜铅锌多金属矿含铜0.10%、铅1.51%、锌2.91%。矿石中矿物种类较多,方铅矿与磁黄铁矿及非金属矿物钙铁辉石、钙铁榴石等关系密切,闪锌矿与黄铜矿、黄铁矿及磁黄铁矿的关系密切,因而较难获得合格的铅锌精矿产品。针对该矿石的特征,采用铜铅组合优先浮选—铜铅分离—铜铅浮选尾矿选锌—铅锌精矿磁选工艺流程,铜铅混合粗选使用水玻璃、石灰、硫酸锌和碳酸钠组合抑制剂,锌精选添加石灰和Ma强化磁黄铁矿抑制剂,分别获得较好的铜、铅、锌产品。实验室小型闭路试验结果为铜精矿含铜20.84%、铜回收率44.54%,铅精矿含铅60.18%、铅回收率88.54%,锌精矿含锌45.70%、锌回收率85.89%。  相似文献   

9.
某铜铅锌多金属硫化矿石中的有用金属矿物主要为方铅矿、闪锌矿、黄铜矿,其次是斑铜矿、蓝铜矿、异极矿和铅矾等,为了确定铜铅锌回收工艺,进行了选矿试验。结果表明,矿石在磨矿细度为-0.074 mm占75%的情况下,采用1粗3精2扫铜铅混浮、1粗3精2扫铜铅分离、1粗2精1扫选锌流程处理矿石,可获得铜品位为22.13%、铜回收率为80.08%的铜精矿,铅品位为62.32%、铅回收率为79.63%的铅精矿,以及锌品位为52.56%、锌回收率为82.20%的锌精矿。在铜铅分离过程中,无氰无铬环保型铅组合抑制剂CHP的使用是实现铜、铅高效分离的关键。  相似文献   

10.
别洛乌索夫斯克选矿厂处理复杂的多金属矿石,矿石中硫化物含量达40%,其中多半是黄铁矿(占25%)。矿石中铅92~94%是方铅矿;锌97%是闪锌矿;铜88%是黄铜矿。矿石中其他矿物有:黝铜矿、斑铜矿、辉铜矿和铜兰。矿石含重晶石达12%。目前,该选矿厂是按全苏有色金属矿冶科学研究所1961年设计的混合浮选流程进行生产(见图1)。流程的特点是,不解吸混合精矿颗粒表面的捕收剂;流程中有锌再浮选工序。混合精矿大部分经液相更换(在浓密机中加清水洗涤)之后,加氰化物和硫酸锌进行再磨,并送往铅-铜浮选工序。在这个作业中氰化物的用量为140~150克/吨。  相似文献   

11.
某铜铅锌多金属硫化矿石中的有用金属矿物主要为方铅矿、闪锌矿、黄铜矿,其次是斑铜矿、蓝铜矿、异极矿和铅矾等,为了确定铜铅锌回收工艺,进行了选矿试验。结果表明,矿石在磨矿细度为-0.074 mm占75%的情况下,采用1粗3精2扫铜铅混浮、1粗3精2扫铜铅分离、1粗2精1扫选锌流程处理矿石,可获得铜品位为22.13%、铜回收率为80.08%的铜精矿,铅品位为62.32%、铅回收率为79.63%的铅精矿,以及锌品位为52.56%、锌回收率为82.20%的锌精矿。在铜铅分离过程中,无氰无铬环保型铅组合抑制剂CHP的使用是实现铜、铅高效分离的关键。  相似文献   

12.
某铜铅锌多金属硫化矿石矿物组成复杂,金属矿物主要为黄铜矿、方铅矿、闪锌矿、黄铁矿、褐铁矿,微量菱锌矿、白铅矿、黝铜矿、铅黄,脉石主要为长石、石英,少量方解石、绢云母等。为开发利用该矿石,对其进行了选矿试验研究。结果表明:在磨矿细度为-0.074 mm占70.92%条件下,经1粗2精2扫铜铅混合浮选、混合精矿经1粗2精2扫铜铅分离浮选、混合尾矿经1粗2精2扫选锌闭路流程试验,获得的铜精矿铜品位为23.59%、银品位为1 659.66 g/t,铜回收率为86.49%、银回收率为76.39%;铅精矿铅品位为50.35%、铅回收率为63.33%;锌精矿锌品位为50.56%、锌回收率为86.02%,铜铅锌矿物得到有效分离和回收。  相似文献   

13.
某铜铅锌次生硫化矿含大量重晶石,有用矿物嵌布关系复杂、粒度细,铅氧化率28.32%。矿石中的方铅矿和闪锌矿因夹杂细小铜矿物而自活化,抑制分离浮选困难,常规选矿方法和药剂难以分离出单一铜、铅、锌精矿。试验建议采用粗磨铜铅锌等浮流程,可获得铅+锌品位大于50%的含铜铅锌混合精矿,各金属回收率也较高。混合精矿再用专利冶金方法处理。  相似文献   

14.
该铜锌多金属矿选矿所得铜精矿锌含量高达10%~16%,长期不达标。经详细的矿物学研究表明,主要影响因素既不是闪锌矿解离不充分,也不是存在铜离子对闪锌矿的活化,而是矿石中存在部分含铜的闪锌矿,进入铜精矿的闪锌矿单体都是含铜1%~2%的这种解离颗粒而别于锌精矿中的闪锌矿,后者基本不含铜。因此,铜锌浮选体系中含铜闪锌矿如何有效地抑制的问题应该成为铜锌浮选分离工艺研究的新问题。  相似文献   

15.
某低品位金铜矿石含铜0.46%、金0.18 g/t,矿石中铜矿物主要以蓝辉铜矿、辉铜矿、铜蓝、硫砷铜矿等次生铜矿物存在,其可浮性好但容易过磨,造成浮选时细粒级损失较高,试验采用浮选柱+浮选机联合选别与单独采用浮选机相比,其它指标相当的情况下,铜精矿品位提高9.6%,硫精矿回收率提高9.23%,试验表明浮选柱对提高精矿品质、简化流程和强化细粒级回收方面具有较为明显地优势。  相似文献   

16.
某低品位金铜矿石含铜0.46%、金0.18 g/t,矿石中铜矿物主要以蓝辉铜矿、辉铜矿、铜蓝、硫砷铜矿等次生铜矿物存在,其可浮性好但容易过磨,造成浮选时细粒级损失较高,试验采用浮选柱+浮选机联合选别与单独采用浮选机相比,其它指标相当的情况下,铜精矿品位提高9.6%,硫精矿回收率提高9.23%,试验表明浮选柱对提高精矿品质、简化流程和强化细粒级回收方面具有较为明显地优势。  相似文献   

17.
某铜铅锌多金属矿含铜0.54%、铅1.75%、锌10.44%。矿石中矿物种类繁多,嵌布粒度细,互相交代关系复杂,在浮选分离过程中互含严重,且矿石中存在大量的长石、白云石等易浮脉石,磨矿过程中极易泥化,恶化浮选环境,因此,难以获得合格的产品。针对该矿石的特征,在铜铅优先混合浮选—铜铅分离—铜铅浮选尾矿选锌的原则工艺流程基础上,采用选择性药剂BKW和BKN组合,作为铜铅优先浮选的捕收剂,铜铅混合精选时采用组合抑制剂BKFN和BKFA强化对含锌矿物及脉石矿物的抑制,铜铅分离采用新型抑制剂BK503抑铜浮铅,分别获得较好的铜、铅、锌产品。实验室小型闭路试验结果为铜精矿含铜18.12%、铜回收率60.66%,铅精矿含铅48.27%、铅回收率68.95%,锌精矿含锌48.76%、锌回收率91.10%。  相似文献   

18.
某铅锌多金属矿石的主要金属矿物为方铅矿、黄铜矿和闪锌矿,针对该矿石的特征,采用铜铅混合浮选—铜铅分离—混浮尾矿选锌的工艺流程。在试验确定的合理工艺条件下,得到含Cu 18.45%,回收率64.81%的铜精矿,含Pb 63.3%,回收率88.07%的铅精矿,含Zn 50.95%,回收率93.57%的锌精矿。  相似文献   

19.
氰化尾渣中铅锌分离试验研究   总被引:4,自引:1,他引:3  
在充分考虑氰化体系中各种金属离子及其络合物对浮选的影响基础上, 以碳酸钠+硫酸亚铁+硫酸锌为锌的组合抑制剂、以乙硫氮作捕收剂, 从铅尾中优先浮铅, 用硫酸铜活化、双氧水破坏游离氰根及其络合物、CMC抑制铅矿物及脉石矿物从铅尾中浮选回收锌, 获得了铅品位为49.93%、含锌5.22%、铅回收率为82.69%的铅精矿和锌品位为48.86%、含铅2.23%、锌回收率为85.75%的锌精矿, 实现了氰渣中铅锌的有效分离。  相似文献   

20.
国内某矽卡岩型铜铅锌多金属硫化矿石主要呈浸染状、星散状、星点状以及细脉状构造。主要有用金属矿物为方铅矿、闪锌矿,其次黄铜矿。方铅矿主要呈他形粒状和不规则状产出,粒径一般为0.01~1.8 mm;闪锌矿呈他形粒状和不规则状产出,粒径一般为0.01~1.2 mm;黄铜矿多呈不规则状或他形粒状产出,粒径一般为0.01~0.3 mm。为高效开发利用该矿石,采用铜铅混合浮选—铜铅分离—混合浮选尾矿浮锌流程对该矿石进行了选矿试验研究。结果表明:(1)石灰、水玻璃、硫酸锌与碳酸钠组合可以削弱闪锌矿、黄铁矿、磁黄铁矿及硅酸盐脉石矿物的可浮性,较好地实现铜铅混合浮选;铜铅混合精矿经活性炭脱药后,以重铬酸钾+水玻璃+CMC为组合抑制剂抑铅浮铜,能够有效分离铜铅;以硫酸铜为锌矿物活化剂、石灰为硫抑制剂可高效浮锌。(2)试验采用1粗1精1扫铜铅混浮、1粗2精1扫铜铅分离、1粗2精2扫浮锌、中矿顺序返回流程处理矿石,可获得铜品位为20.08%、铜回收率为46.34%的铜精矿,铅品位为47.89%、铅回收率为82.72%的铅精矿,以及锌品位为42.98%、锌回收率为93.03%的锌精矿,较好地实现了铜、铅、锌综合回收。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号