首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Varying degrees of mercury capture and transformation have been reported across electrostatic precipitators (ESPs). Previous analyses have shown that the dominant mass transfer mechanism responsible for mercury capture within ESPs is gas-particle mass transfer during particulate collection. Whereas previous analyses assumed dispersions of uniform size, the present analysis reveals the effects of polydispersity on both gas-particle mass transfer and particle collection within an ESP. The analysis reveals that the idealized monodisperse particle size distribution provides the highest gas-particle mass transfer but results in the lowest particle collection efficiency (% mass). As the particle size distribution broadens, gas-particle mass transfer decreases and particle collection efficiency increases. The results suggest that more than just reporting mean particle diameter provided by the sorbent manufacturer, pilot- and field-tests of sorbent injection for mercury emissions control need to experimentally measure the particle size distribution of the sorbent as it is injected in order to facilitate interpretation of their results.  相似文献   

2.
Electrostatic precipitation is the dominant method of particulate control used for coal combustion, and varying degrees of mercury capture and transformation have been reported across ESPs. Nevertheless, the fate of gas-phase mercury within an ESP remains poorly understood. The present analysis focuses on the gas-particle mass transfer that occurs within a charged aerosol in an ESP. As a necessary step in gas-phase mercury adsorption or transformation, gas-particle mass transfer-particularly in configurations other than fixed beds-has received far less attention than studies of adsorption kinetics. Our previous analysis showed that only a small fraction of gas-phase mercury entering an ESP is likelyto be adsorbed by collected particulate matter on the plate electrodes. The present simplified analysis provides insight into gas-particle mass transfer within an ESP under two limiting conditions: laminar and turbulent fluid flows. The analysis reveals that during the process of particulate collection, gas-particle mass transfer can be quite high, easily exceeding the mass transfer to ESP plate electrodes in most cases. Decreasing particle size, increasing particle mass loading, and increasing temperature all result in increased gas-particle mass transfer. The analysis predicts significantly greater gas-particle mass transfer in the laminar limitthan in the turbulent limit; however, the differences become negligible under conditions where other factors, such as total mass of suspended particulates, are the controlling mass transfer parameters. Results are compared to selected pilot- and full-scale sorbent injection data.  相似文献   

3.
Fine particle emissions from combustion sources have gained attention recently due to their adverse effects on human health. The emission depends on the combustion process, fuel, and particulate removal technology. Particle concentrations at Kraft recovery boiler exits are very high, and the boilers are typically equipped with electrostatic precipitators (ESP). However, little data are available on the ESP performance in recovery boilers. Particle concentrations and size distributions were determined at two modern, operating recovery boilers. In addition, we determined the fractional collection efficiency of the ESPs by simultaneous measurements at the ESP inlet and outlet and the particulate emissions of trace metals. The particle mass concentration atthe ESP inlet was 11-24 g/Nm3 at the two boilers. Particle emissions were 30-40 mg/ Nm3 at boiler A and 12-15 mg/Nm3 at boiler B. The particle size distributions had a major particle mode at around 1 microm. These fume particles contained most of the particle mass. The main components in the particles were sodium and sulfate with minor amounts of chloride, potassium, and presumably some carbonate. The ESP collection efficiency was 99.6-99.8% at boiler A and 99.9% at boiler B. The particle penetration through the ESP was below 0.6% in the entire fume particle size range of 0.3-3 microm. Trace element emissions from both boilers were well below the limit values set by EU directive for waste incineration.  相似文献   

4.
Total gaseous mercury in headspace air was measured for enclosed concretes dry curing at 40 degrees C for intervals of 2, 28, and 56 days. Release of mercury was confirmed for ordinary Portland cement concrete (OPC) and three concretes in which class F fly ash substituted for a fraction of the cement: (a) 33% fly ash (FA33), (b) 55% fly ash (FA55), and (c) 33% fly ash plus 0.5% mercury-loaded powdered activated carbon (HgPAC). Mean rates of mercury release (0.10-0.43 ng/day per kg of concrete) over the standard first 28 days of curing followed the order OPC < FA33 approximately FA55 < HgPAC. The mercury flux from exposed surfaces of these concretes ranged from 1.9 +/- 0.5 to 8.1 +/-2.0 ng/m(2)/h, values similar to the average flux for multiple natural substrates in Nevada, 4.2 +/- 1.4 ng/m(2)/h, recently published by others. Air sampling extending for 28 days beyond the initial 28-day maturation for OPC, FA55, and HgPAC suggested that the average Hg release rate by OPC is constant over 56 days and that mercury release rates for FA55 and HgPAC may ultimately diminish to levels exhibited by OPC concrete. The release of mercury from all samples was less than 0.1% of total mercury content over the initial curing period, implying that nearly all of the mercury was retained in the concrete.  相似文献   

5.
Particulate matter emissions from a series of different Chinese coal combustion systems were collected and analyzed for elemental and organic carbon (EC, OC), and molecular markers. Emissions from both industrial boilers and residential stoves were investigated. The coal used in this study included anthracite, bituminite, and brown coal, as well as commonly used coal briquettes produced in China for residential coal combustion. Results show significant differences in the contribution of carbonaceous species to particulate mass emissions. Industrial boilers had much higher burn out of carbon yielding particulate matter emissions with much lower levels of OC, EC, and speciated organic compounds, while residential stoves had significantly higher emissions of carbonaceous particulate matter with emission rates of approximately 100 times higher than that of industrial boilers. Quantified organic compounds emitted from industrial boilers were dominated by oxygenated compounds, of which 46-68% were organic acids, whereas the dominate species quantified in the emissions from residential stoves were PAHs (38%) and n-alkanes (20%). An important observation was the fact that emission factors of PAHs and the distribution of hopanoids were different among the emissions from industrial and residential coal combustion even using the same coal for combustion. Although particulate matter emissions from industrial and residential combustion were different in many regards, picene was detected in all samples with detectable OC mass concentrations, which supports the use of this organic tracer for OC from all types of coal combustion. 17alpha(H),21beta(H)-29-norhopane was the predominant hopanoid in coal combustion emissions, which is different from mobile source emissions and may be used to distinguish emissions from these different fossil fuel sources.  相似文献   

6.
Mercury emissions from wildfires are significant natural sources of atmospheric mercury, but little is known about what controls speciation of emissions important to mercury deposition processes. The goal of this study was to quantify gaseous elemental mercury (GEM) and particulate-phase mercury (PHg) emissions from biomass combustion to identify key factors controlling the speciation. Emissions were characterized in an exhaust stack 17 m above fires using a gaseous mercury analyzer and quartz-fiber filters. Fuels included fresh and air-dried leaves, needles, and branches with different fuel moistures (9-95% of dry weight) and combustion properties (e.g., from < 10 to 90% of fire durations characterized by flaming phases). Fuel moisture was the overall driving factor defining emissions, with GEM being the dominant fraction (> or = 95%) in low moisture fuels and substantial PHg contributions--up to 50% of total mercury emissions--in fresh fuels. High PHg emissions were observed during smoldering combustion whereas flaming-dominated fires showed insignificant PHg emissions. PHg mass emissions were correlated with particulate matter (PM; r2 = 0.67), organic carbon (OC; r2 = 0.63) and sulfur (S; r2 = 0.46) mass emissions, but not with elemental carbon (EC) nor with the total mercury emissions. These data suggest that the formation of PHg involves similar processes as the formation of particulate OC, for example condensation of volatile species onto preexisting smoke particles during cooling and dilution. Based on the observed relationship between PM and OC mass concentrations and published emission inventories, we estimate global PHg emissions by wildfires of 4-5 Mg yr(-1).  相似文献   

7.
Combustion experiments in a laboratory-scale fixed bed reactor were performed to determine the role of temperature and time in polychlorinated dibenzo-p-dioxin (PCDD) and polychlorinated dibenzofuran (PCDF) formation, allowing a global kinetic expression to be written for PCDD/F formation due to soot oxidation in fly ash deposits. Rate constants were calculated for the reactions of carbon degradation, PCDD/F formation, desorption, and degradation. For the first time, values for activation and thermodynamic parameters for the overall reactions have been calculated for PCDD/F formation, desorption, and destruction reactions. Good agreement was found between the calculated rate constants for carbon degradation and for PCDD/F formation, indicating that the two processes have a common rate-determining step. Moreover, PCDD/F formation was found to be still active after long reaction times (24 h). These results points out the importance of carbon deposits in the postcombustion stages that can account for emissions long after their formation (memory effects). The calculated formation rates were 7-15 times higher than those reported in the literature from fly ash-only experiments, indicating the importance of both soot and a continuous source of chlorine. A comparison between full-scale incinerator rates and model calculated rates indicates that our model based on carbon degradation kinetic can be a tool to estimate emissions.  相似文献   

8.
Brominated powdered activated carbon sorbents have been shown to be quite effective for mercury capture when injected into the flue gas duct at coal-fired power plants and are especially useful when burning Western low-chlorine subbituminous coals. X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) have been used to determine information about the speciation and binding of mercury on two commercially available brominated activated carbons. The results are compared with similar analysis of a conventional (non-halogenated) and chlorinated activated carbon. Both the XAS and XPS results indicate that the mercury, though introduced as elemental vapor, is consistently bound on the carbon in the oxidized form. The conventional and chlorinated activated carbons appeared to contain mercury bound to chlorinated sites and possibly to sulfate species that have been incorporated onto the carbon from adsorbed SO2. The mercury-containing brominated sorbents appear to contain mercury bound primarily at bromination sites. The mechanism of capture for the sorbents likely consists of surface-enhanced oxidation of the elemental mercury vapor via interaction with surface-bound halide species with subsequent binding by surface halide or sulfate species.  相似文献   

9.
Experiments were performed to characterize transformation and speciation of hazardous air pollutants (HAPs), including SO(2)/SO(3), NO(x), HCl, particulate matter, mercury, and other trace elements in oxygen-firing bituminous coal with recirculation flue gas (RFG) from 1) an electrostatic precipitator outlet or 2) a wet scrubber outlet. The experimental results showed that oxycombustion with RFG generated a flue gas with less volume and containing HAPs at higher levels, while the actual emissions of HAPs per unit of energy produced were much less than that of air-blown combustion. NO(x) reduction was achieved in oxycombustion because of the elimination of nitrogen and the destruction of NO in the RFG. The elevated SO(2)/SO(3) in flue gas improved sulfur self-retention. SO(3) vapor could reach its dew point in the flue gas with high moisture, which limits the amount of SO(3) vapor in flue gas and possibly induces material corrosion. Most nonvolatile trace elements were less enriched in fly ash in oxycombustion than air-firing because of lower oxycombustion temperatures occurring in the present study. Meanwhile, Hg and Se were found to be enriched on submicrometer fly ash at higher levels in oxy-firing than in air-blown combustion.  相似文献   

10.
In several recent studies it was shown that high atmospheric loads of submicrometer particles in the size range below 500 nm have strong impact on human health. Therefore, extensive research concerning the reduction of fine particle emissions is needed to further improve air quality. Regarding health effects, especially the emission characteristics of fine and ultrafine particles emerging from anthropogenic sources such as combustion processes are of special interest. This study shows that the emission characteristic of an electrostatic precipitator (ESP) due to re-entrainment of fine particles and their subsequent release into the atmosphere can be significantly lowered by application of different operating conditions. For this purpose the particle collection efficiency of an ESP was studied in a municipal sewage sludge incineration plant. Particles were sampled under different operating conditions upstream and downstream from the ESP, and the particle number concentrations were measured simultaneously with aerodynamic particle sizers. In addition, the size distribution of the particles downstream from the ESP was measured with high time resolution by an electrical low-pressure impactor to investigate the particle re-entrainment into the flue gas. To determine the influence of operating conditions, different rapping cycles were investigated regarding their impact on the collection efficiency and the subsequent particle re-entrainment.  相似文献   

11.
Particle and trace element emissions from energy production have continuously been subject to tightening regulations. At the same time, not enough is known on the effect of different combustion processes and different fuels and fuel mixtures on the particle characteristics and particle removal device operation. In this investigation, electrostatic precipitator fractional collection efficiency and trace metal emissions were determined experimentally at a 66 MW biomass-fueled bubbling fluidized-bed combustion plant. The measurements were carried out at the inlet and outlet of the two-field electrostatic precipitator (ESP) at the flue gas temperature of 130-150 degrees C. Two fuel mixtures were investigated: biomass fuel containing 70% wood residue and 30% peat and biomass with recovered fuel containing 70% wood residue, 18% peat, and 12% recovered fuel. The particle mass concentration at the ESP inlet was 510-1400 mg/Nm3. Particle emission at the ESP outlet was 2.3-6.4 mg/Nm3. Total ESP collection efficiency was 99.2-99.8%. Collection efficiency had a minimum in particle size range of 0.1-2 microm. In this size range, collection efficiency was 96-97%. The emission of the trace metals As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sb, Tl, and V was well below the regulation values set by EU directive for waste incineration and co-incineration.  相似文献   

12.
Individual organic compounds found in particulate emissions from vehicles have proven useful in source apportionment of ambient particulate matter. Species of interest include the hopanes, originating in lube oil, and selected PAHs generated via combustion. Most efforts to date have focused on emissions and apportionment PM10 or PM2.5 However, examining how these compounds are segregated by particle size in both emissions and ambient samples will help efforts to apportion size-resolved PM, especially ultrafine particles which have been shown to be more potent toxicologically. To this end, high volume size-resolved (coarse, accumulation, and ultrafine) PM samples were collected inside the Caldecott tunnel in Orinda, California to determine the relative emission factors for these compounds in different size ranges. Sampling occurred in two bores, one off-limits to heavy-duty diesel vehicles, which allows determination of the different emissions profiles for diesel and gasoline vehicles. Although tunnel measurements do not measure emissions over a full engine duty cycle, they do provide an average emissions profile over thousands of vehicles that can be considered characteristic of "freeway" emissions. Results include size-fractionated emission rates for hopanes, PAHs, elemental carbon, and other potential organic markers apportioned to diesel and gasoline vehicles. The results are compared to previously conducted PM2.5 emissions testing using dynamometer facilities and othertunnel environments.  相似文献   

13.
This study evaluated the effects of various combinations of fuels and emission control technologies on exhaust emissions from a heavy-duty diesel engine tested on an engine dynamometer. Ten fuels were studied in twenty four combinations of fuel and emission control technology configurations. Emission control systems evaluated were diesel oxidation catalyst (DOC), continuously regenerating diesel particulate filter (CRDPF), and the CRDPF coupled with an exhaust gas recirculation system (EGRT). The effects of fuel type and emission control technology on emissions of benzene, toluene, ethylbenzene, xylene (BTEX), and 1,3-butadiene, elemental carbon and organic carbon (EC/OC), carbonyls, polycyclic aromatic hydrocarbons (PAHs), and nitro-PAHs (n-PAHs) are presented in this paper. Regulated gaseous criteria pollutants of total hydrocarbons (THC), carbon monoxide (CO), oxides of nitrogen (NO(x)) and particulate matter (PM) emissions have been reported elsewhere. In general, individual unregulated emission with a CRDPF or an EGRT system is similar (at very low emission level) or much lower than that operating solely with a DOC and choosing a "best" fuel. The water emulsion PuriNO(x) fuel exhibited higher BTEX, carbonyls and PAHs emissions compared to other ultralow sulfur diesel (ULSD) fuels tested in this study while n-PAH emissions were comparable to that from other ULSD fuels. Naphthalene accounted for greater than 50% of the total PAH emissions in this study and there was no significant increase of n-PAHs with the usage of CRDPF.  相似文献   

14.
The impending EPA regulations on the control of mercury emissions from the flue stacks of coal-burning electric utilities has resulted in the development of numerous advanced mercury control technologies such as sorbent injection and in-situ mercury oxidation. Although these technologies can effectively remove mercury from a flue stack they share, along with many other technologies, the common shortcoming of intermedia pollution transfer i.e. the traffic of mercury from the air phase to the solid phase and the subsequent generation of residue for landfill. This work addresses the need for an integrated system of mercury removal and recovery from flue stack gases and from the environment. The research explored the capture of elemental mercury from the gas phase at ambient temperature on an electrically conductive porous sorbent. The mercury loaded sorbent was regenerated at the anode in an electrochemical cell and the oxidized mercury recovered at the cathode as solid elemental mercury. Activated carbon cloth was selected as the most suitable sorbent as it had the highest mercury adsorption capacity of the sorbents tested and was electrically conductive. Direct and indirect electro-oxidation were shown to remove 95% and 100%, respectively, of the elemental mercury from the carbon cloth. After regeneration the carbon cloth was reused without any loss in mercury adsorption capacity. More than 99% of the mercury stripped from the cloth during regeneration was recovered at the cathode.  相似文献   

15.
Diesel exhaust particles are the major constituent of urban carbonaceous aerosol being linked to a large range of adverse environmental and health effects. In this work, the effects of fuel reformulation, oxidation catalyst, engine type, and engine operation parameters on diesel particle emission characteristics were investigated. Particle emissions from an indirect injection (IDI) and a direct injection (DI) engine car operating under steady-state conditions with a reformulated low-sulfur, low-aromatic fuel and a standard-grade fuel were analyzed. Organic (OC) and elemental (EC) carbon fractions of the particles were quantified by a thermal-optical transmission analysis method and particle size distributions measured with a scanning mobility particle sizer (SMPS). The particle volatility characteristics were studied with a configuration that consisted of a thermal desorption unit and an SMPS. In addition, the volatility of size-selected particles was determined with a tandem differential mobility analyzer technique. The reformulated fuel was found to produce 10-40% less particulate carbon mass compared to the standard fuel. On the basis of the carbon analysis, the organic carbon contributed 27-61% to the carbon mass of the IDI engine particle emissions, depending on the fuel and engine operation parameters. The fuel reformulation reduced the particulate organic carbon emissions by 10-55%. In the particles of the DI engine, the organic carbon contributed 14-26% to the total carbon emissions, the advanced engine technology, and the oxidation catalyst, thus reducing the OC/EC ratio of particles considerably. A relatively good consistency between the particulate organic fraction quantified with the thermal optical method and the volatile fraction measured with the thermal desorption unit and SMPS was found.  相似文献   

16.
In the U.S.A., exhaust emissions from city buses fueled by diesel are not characterized well because current emission standards require engine tests rather than tests of whole vehicles. Two transportable chassis dynamometer laboratories developed and operated by West Virginia University (WVU) have been used extensively to gather realistic emission data from heavy-duty vehicles, including buses, tested in simulated driving conditions. A subset of these data has been utilized for a comprehensive introspection into the trends of regulated emissions from transit buses over the last 7 years, which has been prompted by continuously tightening restrictions on one hand, along with remarkable technological progress, on the other hand. Two widely used models of diesel engines manufactured by the Detroit Diesel Corporation (DDC) have been selected as a case-study for such an overview, based on full-scale, on-site testing of actual city buses, driven in accordance with the SAE J1376 standard of a Commercial Business District (CBD) cycle. The results provide solid, quantitative evidence that most regulated emissions from engines produced by DDC have declined over the years, especially with the transition from the 6V-92TA to the Series 50 models. This improvement is remarkable mainly for the emissions of particulate matter (PM), that are lower by over 70%, on average, for the Series 50 engines, though the emissions of nitrogen oxides (NOx) exhibit a reversed trend, showing a degradation of about 6%, on average, with the transition from 6V-92TA to the Series 50 engines. The expected trend of decreasing emission levels with the model year of the engine is clear and consistent for particulate matter (PM), hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx), starting with the 1990 models, although it is not conclusive for carbon dioxide (CO2) emissions.  相似文献   

17.
Elemental carbon (EC), organic carbon (OC), and particulate matter (PM) emission rates are reported for a number of heavy heavy-duty diesel trucks (HHDDTs) and back-up generators (BUGs) operating under real-world conditions. Emission rates were determined using a unique mobile emissions laboratory (MEL) equipped with a total capture full-scale dilution tunnel connected directly to the diesel engine via a snorkel. This paper shows that PM, EC, and OC emission rates are strongly dependent on the mode of vehicle operation; highway, arterial, congested, and idling conditions were simulated by following the speed trace from the California Air Resources Board HHDDT cycle. Emission rates for BUGs are reported as a function of engine load at constant speed using the ISO 8178B Cycle D2. The EC, OC, and PM emission rates were determined to be highly variable for the HHDDTs. It was determined that the per mile emission rate of OC from a HHDDT in congested traffic is 8.1 times higher than that of an HHDDT in cruise or highway speed conditions and 1.9 times higher for EC. EC/OC ratios for BUGs (which generally operate at steady states) and HHDDTs show marked differences, indicating that the transient nature of engine operation dictates the EC/OC ratio. Overall, this research shows that the EC/OC ratio varies widely for diesel engines in trucks and BUGs and depends strongly on the operating cycle. The findings reported here have significant implications in the application of chemical mass balance modeling, diesel risk assessment, and control strategies such as the Diesel Risk Reduction Program.  相似文献   

18.
A source apportionment study was performed for particulate matter in the small village of Roveredo, Switzerland, where more than 70% of the households use wood burning for heating purposes. A two-lane trans-Alpine highway passes through the village and contributes to the total aerosol burden in the area. The village is located in a steep Alpine valley characterized by strong and persistent temperature inversions during winter, especially from December to February. During two winter and one early spring campaigns, a seven-wavelength aethalometer, high volume (HIVOL) samplers, an Aerodyne quadrupole aerosol mass spectrometer (AMS), an optical particle counter (OPC), and a Sunset Laboratory OCEC analyzer were deployed to study the contribution of wood burning and traffic aerosols to particulate matter. A linear regression model of the carbonaceous particulate mass in the submicrometer size range CM(PM1) as a function of aerosol light absorption properties measured by the aethalometer is introduced to estimate the particulate mass from wood burning and traffic (PM(wb), PM(traffic)). This model was calibrated with analyses from the 14C method using HIVOL filter measurements. These results indicate that light absorption exponents of 1.1 for traffic and 1.8-1.9 for wood burning calculated from the light absorption at 470 and 950 nanometers should be used to obtain agreement of the two methods regarding the relative wood burning and traffic emission contributions to CM(PM1) and also to black carbon. The resulting PM(wb) and PM(traffic) values explain 86% of the variance of the CM(PM1) and contribute, on average, 88 and 12% to CM(PM1), respectively. The black carbon is estimated to be 51% due to wood burning and 49% due to traffic emissions. The average organic carbon/total carbon (OC/TC) values were estimated to be 0.52 for traffic and 0.88 for wood burning particulate emissions.  相似文献   

19.
This work measures the penetration of ultrafine particles through a single-stage and a two-stage ESP as a function of particle size. Also studied herein are how parameters including particle size, rate of airflow through the ESP, and voltage of the discharging electrode affect aerosol penetration through the ESP. Monodisperse particles with sizes between 10 and 60 nm were generated as the challenge aerosols to investigate the particle charges given by an ESP. A comparison of experimental and theoretical results confirms that a partial charging regime exists when the particle diameter is several tens of nanometers. Experimental results indicated that aerosol penetration through the single- and two-stage ESPs increased significantly for particles below 20 and 50 nm, respectively. However, the exact regime depends on the parameters including airflow rate, applied voltage, and configuration of the ESP. Phenomena such as ionic flow, particle space charge, and flow turbulence may significantly affect the collection efficiency of an ESP for ultrafine particles. To achieve the same collection efficiency, it is more economical to use single-stage ESPs to collect particles less than 16 nm from the standpoint of energy consumption. However, it is more economical to use two-stage ESPs to collect particles larger than 16 nm.  相似文献   

20.
Particle and gas emissions from a simulated coal-burning household fire pit   总被引:3,自引:0,他引:3  
An open fire was assembled with firebricks to simulate the household fire pit used in rural China, and 15 different coals from this area were burned to measure the gaseous and particulate emissions. Particle size distribution was studied with a microorifice uniform-deposit impactor (MOUDI). Over 90% of the particulate mass was attributed to sub-micrometer particles. The carbon balance method was used to calculate the emission factors. Emission factors for four pollutants (particulate matter, CO2, total hydrocarbons, and NOx) were 2-4 times higherfor bituminous coals than for anthracites. In past inventories of carbonaceous emissions used for climate modeling, these two types of coal were not treated separately. The dramatic emission factor difference between the two types of coal warrants attention in the future development of emission inventories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号