首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Poland, as many other countries, has ambitions to increase the use of renewable energy sources. In this paper, we review the current status of bioenergy in Poland and make a critical assessment of the prospects for increasing the share of bioenergy in energy supply, including policy implications. Bioenergy use was about 4% (165 PJ) of primary energy use (3900 PJ) and 95% of renewable energy use (174 PJ) in 2003, mainly as firewood in the domestic sector. Targets have been set to increase the contribution of renewable energy to 7.5% in 2010, in accordance with the EU accession treaty, and to 14% in 2020. Bioenergy is expected to be the main contributor to reaching those targets. From a resource perspective, the use of bioenergy could at least double in the near term if straw, forestry residues, wood-waste, energy crops, biogas, and used wood were used for energy purposes. The long-term potential, assuming short rotation forestry on potentially available agricultural land is about one-third, or 1400 PJ, of current total primary energy use. However, in the near term, Poland is lacking fundamental driving forces for increasing the use of bioenergy (e.g., for meeting demand increases, improving supply security, or further reducing sulphur or greenhouse gas emissions). There is yet no coherent policy or strategy for supporting bioenergy. Co-firing with coal in large plants is an interesting option for creating demand and facilitating the development of a market for bioenergy. The renewable electricity quota obligation is likely to promote such co-firing but promising applications of bioenergy are also found in small- and medium-scale applications for heat production. Carbon taxes and, or, other financial support schemes targeted also at the heating sector are necessary in the near term in order to reach the 7.5% target. In addition, there is a need to support the development of supply infrastructure, change certain practices in forestry, coordinate RD&D efforts, and support general capacity building. The greatest challenge for the longer term lies in reforming and restructuring the agricultural sector.  相似文献   

2.
In the bioenergy discourse that ties energy and agricultural markets closely together, evidence based policy formulation is key to ensure integrated food and energy systems are developed when viable. Bioenergy is a particularly complex form of renewable energy as it covers a broad range of disciplines thus requiring a multidisciplinary approach to ensure viability. If built in a specific manner it has the option to target and provide investments in agriculture, a key sector for a number of developing economies.Due to the complexity of the issue, generating information, especially when resources are limited, can be cumbersome. We present a multidisciplinary approach, the Bioenergy and Food Security (BEFS) Rapid Appraisal, that can provide a first level of information within the decision making process.The analysis within the BEFS Rapid Appraisal defines the country context, estimates the biomass available for bioenergy production and ties this amount to specific bioenergy supply chains. Available biomass originating from agriculture is calculated net of current and foreseen uses and needs, thus accounting for food security. The bioenergy production potential is evaluated by quantifying the feedstock available, identifying income and employment opportunities, and energy access options. We present an application of the BEFS Rapid Appraisal for rural electrification options in Malawi.  相似文献   

3.
Turkey is one of the countries with significant potential in geothermal energy. It is estimated that if Turkey utilizes all of her geothermal potential, she can meet 14% of her total energy need (heat and electricity) from geothermal sources. Therefore, today geothermal energy is an attractive option in Turkey to replace fossil fuels. Besides, increase in negative effects of fossil fuels on the environment has forced many countries, including Turkey, to use renewable energy sources. Also, Turkey is an energy importing country; more than two-thirds of her energy requirement is supplied by imports. In this context, geothermal energy appears to be one of the most efficient and effective solutions for sustainable energy development and environmental pollution prevention in Turkey. Since geothermal energy will be used more and more in the future, its current potential, usage, and assessment in Turkey is the focus of the present study. The paper not only presents a review of the potential and utilization of the geothermal energy in Turkey but also provides some guidelines for policy makers.  相似文献   

4.
Three annual plant species, maize, hemp and faba bean were tested for suitability as dedicated biomass crops in Boreal conditions. Biomass yields were 10-15 t ha-1. The crops were analyzed for their composition and tested as raw materials for conversion to methane and to fermentable sugars. The methane yield was 379 ± 16 Ndm3 kg−1 VS−1 from maize, 387 ± 20 Ndm3 kg−1 VS−1 from faba bean and 239 ± 9 Ndm3 kg−1 VS−1 from hemp. Based on the yield per hectare, maize proved to be the most potential raw material source for methane production. Analogous to methane production, maize was the most productive raw material also in standard hydrolysis tests, with a conversion yield of about 80% of the theoretical sugars. Based on the amount of carbohydrates, the highest theoretical yield per hectare was obtained with hemp. However, considering all parameters, including the need for weeding and fertilizers, all three crops studied proved to be attractive options for cultivation in boreal conditions as well as being used as energy crops in boreal climate.  相似文献   

5.
This paper explores the prospects and policy implications for bioenergy to contribute to a long-term sustainable UK energy system.  相似文献   

6.
Biomass provides the largest reduction of carbon dioxide (CO2) emission when it replaces coal, which is the dominating fuel in heat and electricity production in Poland. One means of replacing coal with biomass is to co-fire biofuels in an existing coal-fired boiler. This paper presents an analysis of the strengths and weaknesses of co-firing biofuels in Poland with respect to technical, environmental, economical and strategic considerations. This analysis shows that co-firing is technically and economically the most realistic option for using biofuels in the large pulverized fuel (PF) boilers in Poland. However, from an environmental perspective, co-firing of biofuels in large combined heat and power (CHP) plants and power plants provides only a small reduction in sulphur dioxide (SO2) emission per unit biofuel, since these plants usually apply some form of desulphurization technology. In order to maximize the SO2 emission reduction, biofuels should be used in district heating plants. However, co-fired combustion plants can handle disruptions in biofuel supply and are insensitive to moderate changes in fuel prices, which makes them suitable utilizers of biofuels from perennial energy crops. Co-firing could therefore play an important role in stimulating perennial crop production.  相似文献   

7.
The Lake States region of Minnesota, Wisconsin and Michigan offers significant potential for bioenergy production. We examine the sustainability of regional forest biomass use in the context of existing thermal heating, electricity, and biofuels production, projected resource needs over the next decade including existing forest product market demand, and impacts on price and feasibility. Assuming $36 per dry tonne at roadside, 4.1 million dry tonnes of forest biomass could be available region-wide. However, less is likely available due to localized environmental and forest cover type constraints, and landowner willingness to harvest timber. Total projected demand of 5.7 million dry tonnes, based on current and announced industry capacity, exceeds estimates of biomass availability, which suggests that anticipated growth in the forest-based bioeconomy may be constrained. Attaining projected demand will likely require a combination of higher cost feedstocks, integration of energy and non-energy uses, and careful management to meet environmental constraints. State distinctions in biomass harvest guidelines and the propensity for third-party forest certification will be critical in providing environmental safeguards. The cumulative effect of policy initiatives on biomass competition are discussed in the context of an emerging Lake States bioeconomy.  相似文献   

8.
In the past few years extensive discussions on bioenergy has been both positive and negative. In Europe, the image of bioenergy appears to be low with lack of broad public support. Previous studies show that younger people are unsure about many issues surrounding renewable energy. The aim of this study was to investigate the knowledge and perceptions of bioenergy among pupils in North Karelia, Finland. Data drawn from 495 ninth grade students indicate that the majority of them lack in-depth knowledge about different renewable energy sources, including bioenergy. Only a small percentage has a ‘high’ level of knowledge about bioenergy and the majority indicates critical perceptions of it. Statistically significant gender differences are not apparent. Girls appear to be more knowledgeable than boys. Results also show a clear ‘urban’ and ‘rural’ difference in perceptions of bioenergy. Perceptions of urban respondents being more positive than that of their rural counterparts. Developing collaboration between future bioenergy policies and bioenergy education for younger citizens is necessary for their engagement in critical debates on bioenergy.  相似文献   

9.
Energy plays a vital role in socio–economic development and raising standards of human beings. Turkey is a rapidly growing country; both its population and economy are expanding each year so its energy demand increases correspondingly and this increasing demand has to be met for keeping sustainable development in the economy and raising living conditions of mankind. Although Turkey has many energy sources, it is a big energy importer. Turkey has a lot of potential to supply its own energy, which could be put to use in order to avoid this energy dependence. Additionally, Turkey is a country that has an abundance of renewable energy sources and can essentially provide all energy requirements from indigenous energy sources. Biomass is one of the most promising energy sources considered to be alternative to conventional ones.  相似文献   

10.
This article assesses the current technical and economic potential of three bioenergy production systems (cassava ethanol, jatropha oil and fuelwood) in semi-arid and arid regions of eight sub-Saharan African countries. The results indicate that the availability of land for energy production ranges from 2% (1.3 Mha) of the total semi-arid and arid area in South Africa to 21% (12 Mha) in Botswana. Land availability for bioenergy production is restricted mainly by agricultural land use, but also by steep slopes and biodiversity protection. The current total technical potential for the semi-arid and arid regions of the eight countries is calculated to be approximately 300 PJ y−1 for cassava ethanol production, 600 PJ y−1 for jatropha biodiesel or 4000 PJ y−1 for fuelwood. The analysis of economic potentials shows that in many semi-arid regions, cassava ethanol, jatropha oil and fuelwood can compete economically with the reference energy sources. However, fuelwood, jatropha oil, and cassava ethanol production costs in most arid regions of sub-Saharan Africa are often above average national market prices of gasoline, diesel, and fuelwood. Nevertheless, for example, in arid Kenya 270 PJ could be produced annually with fuelwood at production costs of less than 3 US$ GJ−1. Despite high production costs, it is important to investigate and invest in sustainable bioenergy production in semi-arid and arid regions of sub-Saharan Africa because of its potential to drive rural economic and social development.  相似文献   

11.
In this study, lignin, one of the commonly occurring natural polymers, is extracted from banana agro-waste. Lignin is recovered from the spent liquor produced during alkaline pre-treatment of agro-waste and precipitated by acidification. This study focuses on the physio-chemical characterization and thermal degradation behaviour of lignin extracted from agro-waste biomass. The extracted lignin yield accounts for nearly 12% of the biomass composition. Spectral analysis, FTIR and NMR explain purity and carbon skeleton characteristics of herbaceous lignin monomers, majorly G and S units. Morphological analysis by SEM showed hollow spherical structures with large surface area for the extracted lignin. The calorific value of extracted lignin was experimentally found to be 21.4276 MJ/kg, which suggests the possible use of extracted lignin as an alternative to sub-bituminous coal. Thermal studies of lignin showed that lignin degrades in a wide temperature range releasing CO2, CH4, H2O, CO and H2. The volatile content of extracted lignin is found to be 31.42%, which suggests its possibility for gasification process. The overall outcome supported that recovered lignin from agro-waste is a potential resource for bioenergy.  相似文献   

12.
The development of bioenergy technology in China   总被引:3,自引:0,他引:3  
Among renewable energy resources, bioenergy is one of the fastest growth energy alternatives with tremendous potential in China. The thermal, physical, and biological processes of conversion of biomass yield a number of products and can be obtained as gases, liquids, solid fuels, and electricity as well as a variety of chemicals. Various bioenergy technologies that have been developed are at the fundamental research, demonstration, and commercialization stages. This review concentrates on the processes that are attracting the most attention in China.  相似文献   

13.
Turkey is one of the developing countries. The production of electricity in Turkey is basically focused on hydro-power and thermal-power. On the other hand, measurements show that Turkey has a reasonable wind potential but this potential was not being used for many years due to government policies which supported the use of petroleum, coal, and hydro power as energy sources. In recent years there is an increasing interest in using wind energy as one of the energy sources. This paper briefly introduces a study of the determination of wind power potential of Nurda ı/Gaziantep district where is on the south of Turkey for future wind power generation projects. Evaluation of wind data; taken by Turkish Electrical Power Resources Development Administration at the foot of the mountain, Nurda ı, shows that the district has a mean wind speed of 7.3 m/s at 10 m height and observed highest value wind speed is 23.3 m/s. Mean power density of the site is found as 222 W/m2 and the results suggest that the site encourages investors especially since the terrain is a grassy plain on the side of the mountain and the measurements are taken at 10 m height.  相似文献   

14.
This paper provides a resource-based assessment of availability of biomass resources for energy production in Romania, at NUTS-3 level. The estimation of available biomass includes the residues generated from crop production, pruning of vineyards and orchards, forestry operations and wood processing. The estimation of crop residue availability considers several site-specific factors such as crop yields, multi-annual yield variation, environmental constraints and competitive uses. The evaluation of agricultural residues was based on specific residue to product ratios, depending on crop type and crop yield. An estimate of pruning residues is proposed, based on current orchard and vineyard areas and specific ratios of residues. Woody biomass considers forest and forestry residues (including firewood) and wood processing by-products, taking into account the type and share of the unused part of the tree biomass and technical and economic aspects, including availability and competitive use. The amount of agricultural and forest residues available for bioenergy in Romania was estimated at 228.1 PJ on average, of which 137.1 PJ was from annual crop residues, 17.3 PJ residues from permanent crops and 73.7 PJ/year from forestry residues, firewood and wood processing by-products. The biomass availability shows large annual and spatial variations, between 135.6 and 320.0 PJ, due to the variation in crop production and forestry operations. This variation, which is even larger at the NUTS-3 level, if not properly considered may result in shortages in biomass supply in some years, when biomass is available in a lower amount than the average.  相似文献   

15.
Activated carbon has now become a vital active material in multifarious applications such as catalytic supports, removal of pollutants, battery electrodes, capacitors, gas storage etc., and these applications require carbon powders with desirable functionalities like surface area, chemical constituents and pore structure. Hence the production of activated carbon materials, especially from cheap and natural bio-precursors (biomass) is a highly attractive research theme in today's science of advanced materials. Though abundant and detailed reports on activated carbons for these applications are available in the literature, creating a consolidated account on the biomass derived activated carbon would serve as a database for the researchers and thus appears justified. Hence an overview on activated carbons (preparation, physical and electrochemical properties) derived especially from biomass for the specific application as electrodes in electrochemical energy devices has been presented to stress the importance of biomass, bioenergy and conversion of wastes into energy concept further. It is certain from the survey of around 100 recent published articles that the biomass carbons have outstanding capability of being applied as electrodes in the energy devices. Particularly, carbon (unactivated) derived from pyrolized peanut shells exhibited a maximum specific capacity of 4765 mAhg−1 in the case of lithium-ion batteries and coconut shell derived carbon in KOH electrolyte gave capacitance of 368 Fg−1 and ZnCl2 activated carbon from waste coffee grounds exhibited 368 Fg−1 in H2SO4. Undoubtedly the study indicates that the biomass derived carbons have economic and commercial promise in the near future.  相似文献   

16.
Forest biomass is a substantial source of renewable energy and is becoming increasingly important due to environmental and economic reasons. In Germany, several studies have assessed the bioenergy potential for large areas, e.g. for an entire Federal state. However, in most cases it was not possible to provide detailed maps showing the biomass and the sustainable energy potential for individual forest stands. Thus, the aim of this study was to develop a new and robust method that provides detailed information regarding the spatial distribution of biomass and forest residues as a potential energy resource using a combination of remotely sensed and in situ data. A case study was carried out in a mixed forest in Southern Germany. First, regression analyses were applied to identify relationships between field measurements with several remote sensing metrics to estimate timber volume, mean stem diameter and age. Cross-validation yielded relative root mean square errors (RMSEs) of 30.20% for volume, 27.92% for diameter and 28.81% for the estimation of the age. The absolute RMSEs were smaller than the standard deviation of the observed variables. Next, the regression equations were used to compute attributes for individual forest stands. Stand attributes were then used to model forest residues. To estimate the sustainable annual potential, the actual harvest volume, as defined by forest management planning, was included in the model. Different model parameters were analyzed and an average potential from 0.993 to 1.181 t ha−1 a−1 was computed. The results were compared to previous studies in Germany.  相似文献   

17.
The pre-treatment step has a significant influence on the performance of bioenergy chains, especially on logistics. Torrefaction, pelletisation and pyrolysis technologies can convert biomass at modest scales into dense energy carriers that ease transportation and handling.  相似文献   

18.
Application of municipal residues, e.g. wastewater or sewage sludge, to Short Rotation Coppice (SRC) is among the most attractive methods for attaining environmental and energy goals set for Europe. At current woodchip prices in Sweden, the gross margin for SRC cultivation is positive only if biomass production is >9 t DM/ha yr. The gross profit margin increases (by 39 and 199 €/GJ, respectively) if sewage sludge and wastewater are applied to SRC. Application of residues to SRC has proved to be an acceptable alternative treatment method, and the farmer’s profit can be markedly increased if compensation is paid for waste treatment. If all available sludge and wastewater were applied to SRC plantations, they could be grown on large agricultural areas in Europe, and c. 6000 PJ of renewable energy could be produced annually. However, a more economical landuse strategy, e.g. the use of more P-rich residues, appears more rational, and is biologically justifiable.  相似文献   

19.
Biomass energy potential in Turkey   总被引:4,自引:0,他引:4  
Biomass energy includes fuelwood, agricultural residues, animal wastes, charcoal and other fuels derived from biological sources. It currently accounts for about 14% of world energy consumption. Biomass is the main source of energy for many developed and developing countries. In Turkey energy wood is available in the form of forest chips, fuelwood, wood waste, wood pellets, and it is also produced to a very limited extent from willow crops in short rotation forestry. The major part of wood harvested in the forest area (approximately 10 million ha) ends up as energy wood directly or indirectly after having been used for other purposes first. An overview of biomass potential and utilization in Turkey is presented. In 1999, the biomass share of the total energy consumption of the country is 10 percent. The level of fuelwood use together with that of other agricultural and animal wastes is compared with the commercial energy use within the country's global energy balance. The possibilities of increasing fuelwood production through afforestation programmes and substitution for commercial fuels are discussed. Biogas utilization in the rural regions is also reviewed, emphasizing its possible contribution.  相似文献   

20.
In debates about the positive effects of renewable and bioenergy projects the aspect of generating regional added value is discussed widely. But the real effects, generated by this regional added value stayed up to now on a non-measurable level. In order to expedite the calculation of these important figures, the author presents a field tested method for confidently arriving at useful values. This methodology takes into consideration the ecological, economical and social impact of a given biomass project's implementation. The model enables a comparison between the different renewable energy plants as well as between them and plants and technology of competing alternatives. Regional authorities are hereby enabled to count on a tool for confidently measuring the possible results of various bioenergy utilization technologies. With this knowledge at hand, they could then take qualified decisions towards positive effects for their region. The developed tool allows the definition of adjustable parameters, and therefore it is able to influence the regional framework regarding a more sustainable development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号