首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: A new processing method for polypropylene–untreated precipitated silica (PP/SiO2) composites based on the incorporation of a second polymer phase of polyamide 6 (PA6) is presented and compared with a more classic one making use of compatibilizers: glycerol monostearate (GMS), ethylene acrylic acid ionomer (IAAZE) and maleic anhydride grafted polypropylene (MA‐graft‐PP). The effects of processing methods and conditions on the microstructure and properties of PP/SiO2 composites prepared by melt compounding are investigated with a view to reduce the size of aggregates of silica from the micrometre to the nanometre scale and to improve the link between filler and matrix. RESULTS: On the one hand, the presence of GMS and IAAZE compatibilizers significantly improves the dispersion of the silica particles. On the other hand, when using a PA6 second phase, the SiO2 particles are dispersed in PA6 nodules. Within these nodules, SiO2 appears dispersed at the nanoscale but with larger particles (‘aggregates’) of about 200 nm. Significant improvements in tensile strength and modulus are obtained using MA‐graft‐PP compatibilizer. An increase in impact strength is observed in the case of GMS compatibilizer. Thermal parameters indicate also that silica plays the role of nucleation agent for PP matrix. All improvements (tensile strength, modulus and impact strength) increase with the addition of compatibilized PA6 second phase. CONCLUSION: By the incorporation of masterbatch of silica in PA6 as a second polymer polar phase, a successful new production method for PP/SiO2 nanocomposites has been developed. Interestingly, this method does not require any (expensive) pre‐treatment of the silica. Copyright © 2007 Society of Chemical Industry  相似文献   

2.
The main difficulty still encountered in the elaboration of polymer/silica nanocomposites is the control of the nanoparticles dispersion homogeneity and the stability of the nanoparticle dispersion in the surrounding substance. The innovative point of this work is the elaboration of hybrid networks in aqueous solution performed with ASE (alkali swellable emulsion) thickeners grafted with silica nanoparticles. The thickening ability of the polymer should favour silica nanoparticles dispersion in fluid matrices. Two ASE copolymers were realised by copolymerisation in emulsion of MA (methacrylic acid) and EA (ethyl acrylate) and/or TFEM (trifluoroethyl methacrylate). The substitution of a part of EA by TFEM gave fluorinated ASE copolymers. Their free acid functions were then coupled with different ratio of amine functionalized silica nanoparticles to afford nanocomposites. The amounts of silica nanoparticles in the copolymers were determined by thermogravimetric experiments. Depending on the silica nanoparticles/copolymer ratio in basic aqueous solutions we achieved stable translucent gel like aqueous suspensions of silica nanoparticles containing 1 wt.% of the polymer/SiO2 nanocomposite.  相似文献   

3.
Waterborne UV-curable polyurethane (WUPU)/silica nanocomposites were prepared by in situ method using aqueous silica sol. SEM examinations of hybrid films indicated that the nanosilica were well dispersed in the matrix. Atomic force microscopy revealed that the microphase separation between polyurethane and silica was significantly affected by the amount of silica incorporated. DMA analysis showed that the nanocomposite films with silica nanoparticles showed a single tan δ peak, which implies that soft and hard segments of polyurethane are well phase mixed. The nanostructure films displayed enhanced storage modulus, tensile strength without sacrificing high elongation at break. The resulting transparent hybrid films are promising for a number of applications, e.g. for high performance water-based UV-curable coatings.  相似文献   

4.
Mechanical properties of hybrid thin films based on SiO2-PMMA materials were investigated through nanoindentation tests. We demonstrated in the part I of this paper, that nanoindentation is an appropriate technique to characterize hybrid organic–inorganic thin films. Specific procedures of analysis and the use of appropriate models allows to determine reproductive indentation modulus and hardness of the hybrid layers. The mechanical responses of nanocomposites are not only governed by the composition of the layers but also by the nature and the extent of the hybrid interface. Different layers have been studied, constituted by an inorganic and an organic phase that just be physically mixed or covalently connected. The weak (H bonds) or strong (covalent bonds) interactions generated by the hybrid interface lead to nanocomposites which exhibit different mechanical behaviours. Moreover, comparison between layers obtained by in situ inorganic polymerization in PMMA and layers obtained with preformed silica nano-particles have been also investigated to correlate the morphology of the nanocomposites with the mechanical responses.  相似文献   

5.
In the present study, the feasibility of Friction Spot Welding (FSpW) of a commercial-grade poly(methyl methacrylate) (PMMA) (PMMA GS) and PMMA 6N/functionalized silica (SiO2) nanocomposites was investigated. The silica nanoparticles were functionalized via atom transfer radical polymerization (ATRP) with PMMA chains to achieve a uniform dispersion in the polymer matrix. The successful functionalization of silica nanoparticles with PMMA chains via ATRP was evaluated by ATR-FT-IR and TGA measurements. Rheological investigations of the silica nanocomposites showed a plateau of the storage modulus G′ at low frequencies (0.01–0.03 rad/s) as a result of elastic particle–particle interactions. Overlap friction spot welds consisting of PMMA GS and a 2 wt% SiO2-g-PMMA nanocomposite were successfully prepared and compared to spot joints of PMMA GS welded with PMMA 6N and PMMA 6N/silica nanocomposite with 2 wt% unfunctionalized silica nanoparticles. Raman mappings of selected areas of cross-sectional plastographic specimens revealed an increased mixing behavior between the two polymer plates in the case of PMMA GS/2 wt% SiO2-g-PMMA joints. Although the joints welded with PMMA 6N/silica nanocomposites showed a reduction of 22% in lap shear strength and 21% displacement at peak load compared with the neat PMMA spot welds, they can compete with other state-of-the-art PMMA welding techniques such as thermal bonding and ultrasonic welding, which indicates the potential of friction spot welding as an alternative fabrication technology for joining future nanocomposite engineering parts.  相似文献   

6.
Linbo Wu  Dan Cao  Yuan Huang  Bo-Geng Li 《Polymer》2008,49(3):742-748
In situ melt polycondensation of l-lactic acid (LLA) in the presence of acidic silica sol (aSS) is proposed for the first time to prepare PLLA/SiO2 nanocomposites. The SiO2 nanoparticles were readily dispersed in LLA monomer, which has similar polarity and hydrophilicity to the silica sol medium. During the polycondensation process, both the matrix and the surface of SiO2 nanoparticles changed from high polarity/hydrophilicity to weak polarity/hydrophobicity due to simultaneous chain growth in the organic phase and chemical grafting on the particle surface. The chemical grafting provided steric stabilization and ensured satisfactory nano-scale dispersion in the final nanocomposites. The introduction of SiO2 nanoparticles resulted in unchanged yield and better color. The molecular weight kept almost constant at low SiO2 content (<8 wt%) but decreased at higher SiO2 content. The method is also characterized by commercially available and cheap starting material and environmentally benign process. It appears to be a promising approach for the preparation of PLLA/SiO2 nanocomposites.  相似文献   

7.
《Polymer Composites》2017,38(4):774-781
In this article, a series of new silica/polyimide (SiO2/PI) nanocomposite films with high dielectric constant (>4.0), low dielectric loss (<0.0325), high breakdown strength (288.8 kV mm−1), and high volume resistivity (2.498 × 1014 Ω m) were prepared by the hydrolysis of tetraethyl orthosilicate in water‐soluble poly(amic acid) ammonium salt (PAAS). The chemical structure of nanocomposite films compared with the traditional pure PI was confirmed by Fourier transform infrared spectroscopy and X‐ray diffraction patterns. The results indicated that both the PAAS and the polyamide acid (PAA) material were effectively converted into the corresponding PI material through the thermal imidization and the amorphous SiO2 was embedded in the nanocomposite films without structural changes. Thermal stability of the nanocomposite films was increased though mechanical property was generally decreased with increasing the mass fraction of SiO2. All the nanocomposite films exhibited an almost single‐step thermal decomposition behavior and the average decomposition temperature was about 615°C. It was concluded that the effective dispersion of SiO2 particles in PI matrix vigorously improved the comprehensive performance of the SiO2/PI nanocomposite films and expanded their applications in the electronic and environment‐friendly industries. POLYM. COMPOS., 38:774–781, 2017. © 2015 Society of Plastics Engineers  相似文献   

8.
The incorporation of inorganic nanoparticles into polymers have gained significant attention to improving functional properties. The ultimate nanocomposite behaviors are influenced by many parameters, such as microstructural distribution that are produced during the treatment process. Herein, a hybrid material integrating a modified network into a polyimide PI matrix was produced via the sol–gel method by the reaction of pyromellitic dianhydride, 4, 4-oxydianaline, and 1, 5-diaminonaphthalene to synthesize copolyimides nanocomposite. The modified polyimide and unmodified polyimide silica (SiO2) nanoparticles were incorporated in the polyimide matrix to have polyimide silica nanocomposite. In modified silica nanoparticles, 3-aminopropyltriethosilane was introduced to have better compatibility among inorganic–organic hybrid with similar chemical contact due to their flexible alkyl group. The surface morphology or structure of silica and polyimide was affirmed by scanning electron microscopy, Fourier transforms infrared spectroscopy confirmed the synthesis of pure polyimide, unmodified polyimide, and modified polyimide silica via presence and absence of certain peaks. Thermogravimetric analysis (TGA) results showed high thermal stability of nanocomposites as silica content increases. In contrast to unmodified silica, the modified silica provides more thermal stability to the nanocomposites. Dynamic mechanical analysis was used to investigate the tensile stress of pure polyimide, unmodified, and modified silica nanocomposites. Thermal stability, storage modulus, and moisture absorption of these hybrid materials were improved with silica nanoparticles. The TG mass spectrum confirms the successful synthesis of modified silica networks. The substituted silica nanoparticles show higher mechanical toughness and storage in modified compared to unmodified silica nanocomposite, which exhibits stronger binding attraction between silica nanoparticles and polyimide matrix.  相似文献   

9.
Polyamide 1010 (PA1010) had been prepared by in situ melt polycondensation in presence of silica nanospheres with amine groups on the surfaces (SiO2 NH2). Fourier transform infrared spectroscopy (FTIR), X‐ray photoelectron spectroscopy (XPS), and thermal gravimetric analysis (TGA) measurements demonstrated that the nanosphere surface was grafted with PA1010 chains. Wide angle X‐ray diffraction (WAXD) and differential scanning calorimetry (DSC) measurements showed that the PA1010/SiO2 NH2 nanocomposites had a lower degree of crystallinity (χc) in comparison with PA1010 and PA1010/SiO2 nanocomposites. Dynamic mechanical analysis (DMA) indicated that SiO2 NH2 nanospheres improved glass transition temperature (Tg), tensile strength and storage modulus of PA1010 since SiO2–NH2 nanospheres limited the mobility of PA1010 chains. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

10.
With the ultimate goal to design renewable polymer nanocomposites with optimal mechanical properties, this study reports an investigation of structure–property relationships for a model system – silica/poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHx) nanocomposites. Two molecular weights of PHBHx (Mw = 903,000 g/mol and Mw = 633,000 g/mol) and two types of silica nanoparticles (nominally spheres and fibers according to the manufacturer) were used to prepare the nanocomposites. Small-angle X-ray scattering shows that the sphere and fiber nanoparticles had similar surface areas and primary particle size, but differed in degree of aggregation of the primary particles. The thermal stability of the PHBHx matrix was slightly improved by the addition of nanofillers. Simultaneous improvement of both stiffness and toughness was observed at 1-wt% loading for the higher molecular weight matrix. The more highly aggregated SiO2 fibers had a greater toughening effect than the SiO2 spheres. Compared to the unfilled polymer matrix, a 30% increase in Young's modulus and 34% increase in toughness were obtained for the 1-wt% SiO2 fiber/PHBHx072 nanocomposite. The addition of SiO2 spheres to PHBHx072 resulted in the same increase in Young's modulus (30%) but a smaller increase (11%) in toughness. The dramatic increases in modulus for PHBHx072 cannot be explained on the basis of two-component micromechanical models. Apparently the filler alters the character of the semicrystalline matrix. When the loading was 3 wt% and above, Young's modulus continued to increase, but the strain at break and toughness decreased. The ultimate strength did not change compared with the unfilled polymer. In order to understand the mechanical properties observed, the thermal behavior, spherulitic morphology and the deformation mechanisms of the nanocomposites and the dispersion state of the nanofillers were studied. We found that a high molecular weight of the polymer matrix, weak interfacial adhesion and a good dispersion of the nanofillers are necessary to improve toughness and stiffness simultaneously.  相似文献   

11.
High performance silanized silica/epoxy nanocomposites were prepared through mixing epoxy, tetraethyl orthosilicate (TEOS), (3-aminopropyl)trimethoxysilane (APTMS) and ammonia solution at 50 °C. This all-in-one “Solvent-Free One-Pot Synthesis” results in nanocomposites with uniform dispersion of oval shaped silica nanoparticles and strong adhesion between silica and epoxy matrix. The influence of the synthesis conditions, such as molar ratio of NH3:TEOS, aging time, curing process and silica content on the thermal mechanical properties of nanocomposites were studied. The silanized silica/epoxy nanocomposite prepared in this study exhibits better thermal mechanical property in comparison with neat epoxy, non-functionalized silica/epoxy and commercialized silica/epoxy systems. The prepared nanocomposite with 3 wt% silanized silica exhibits 20%, 17% and 6% improvements on flexural, tensile and storage modulus over those of neat epoxy, respectively.  相似文献   

12.
Summary Thermoplastic polyetherimide (PEI)-SiO2 nanocomposites were prepared from a soluble PEI, which was synthesized from m-phenylenediamine and bisphenol A dianhydride, in combination with tetraethoxysilane solution via a novel sol-gel process. A coupling agent was used to enhance the compatibility between PEI and silica. This approach was compared with PEI-clay nanocomposite in which montmorillonite was modified with ammonium salts of 12-aminododecanoic acid using an intercalation polymerization. The size and dispersion of the silica or clay in the PEI nanocomposites were analyzed by X-ray diffractometer and scanning electron microscopy. It was found that the sol-gel process offered a fine interconnected or co-continuous phase, whereas the clay remained dispersed in nanocomposites. Though the thermal properties of PEI-clay nanocomposites were improved over pristine PEI, physical testing showed that the films become brittle as the organoclay content increased to over 2%. The thermal stability and mechanical properties of the PEI/silica nanocomposites prepared by sol-gel process were improved with silica content up to 10%. The onset decomposition temperatures were 550–600 °C. The dielectric constant decreased with increasing amounts of silica. At higher silica contents, the mechanical properties were reduced as a result of the phase separation.  相似文献   

13.
In this study, a commercially available nano‐sized silica (SiO2) was surface‐modified via esterification with oleic acid (OA), a relatively inexpensive and hydrophobic modifier, and characterized by FTIR, NMR, SEM, EDS, and TGA measurements. Various amounts of the surface‐modified silica nanoparticles (SiO2‐OA) were dispersed in a poly(amic acid), which were then cyclized at high temperatures to form a series of PI/SiO2‐OA nanocomposite films (PISA). The effect of the addition of the SiO2‐OA nanoparticles on the properties of the as‐prepared polyimide nanocomposite was studied. The results indicated that, comparing with pure PI and PI/pristine‐SiO2 composite film (PISI), the as‐prepared PISA films had enhanced dynamic mechanical properties and thermal stability, as well as reduced water absorption and thermal expansion. The as‐prepared PI/SiO2‐OA nanocomposites have potential for applications in high performance microelectronic devices. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104, 4096–4105, 2007  相似文献   

14.
This article describes the preparation, characterization, and properties of thermoplastic vulcanizate (TPV)/silica nanocomposites. The nanocomposites were prepared by the melt blending of TPV and maleic anhydride grafted polypropylene (mPP) into organically modified SiO2 (m‐SiO2), treated with n‐hexadecyl trimethylammonium bromide as a grafting agent for TPV during the melt mixing. The thermal stability and storage modulus of the 1 wt % m‐SiO2 containing TPV/mPP/m‐SiO2 nanocomposite were higher than those of pristine TPV. The most important observation was obtained from dynamic mechanical analysis, which revealed that the glass‐transition temperature of the polypropylene phase of the nanocomposites increased (in comparison with that of virgin TPV), whereas the ethylene–propylene–diene monomer phase remained almost the same. The adhesion strength between the TPV/mPP/m‐SiO2 nanocomposites and steel also increased with increasing m‐SiO2 content. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2058–2063, 2005  相似文献   

15.
In this study, long carbon nanofibers (CNFs) were grown on graphene nanoplatelets (GNPs) by chemical vapor deposition (CVD) technique to develop three-dimensional (3D) bicomponent nanostructures. The structure and properties of graphene before and after CVD process were investigated in details. X-ray photoelectron analysis depicted the formation of Fe-C bonds by the deposition of carbon atoms on the catalyst surface of Fe2O3. This hybrid additive was firstly used as a reinforcing agent in melt compounding to fabricate PA6.6-based nanocomposites with enhanced mechanical and thermal properties. Both GNP and CNF-GNP have enough surface oxygen functional groups to improve the interfacial interactions with polyamide matrix and thus provide good wettability. Also, both neat GNP and its bicomponent additive with CNF also acted as a nucleating agent and allowed the crystal growth in nanocomposite structure. Homogeneous dispersion of nanoparticles was achieved by using thermokinetic mixer during compounding by applying high shear rates. Mechanical results showed that 23 and 34% improvement in flexural and tensile modulus values, respectively, was attained by the addition of 0.5 wt % CNF-GNP hybrid additive. The heat distortion temperature and Vicat softening temperature of the resulting PA6.6 nanocomposites were improved compared to neat PA6.6 material indicating performance enhancement at higher service temperature conditions. CNF was successfully grown on Fe-loaded GNP by CVD method and this hybrid additive was compounded with PA6.6 by melt-mixing process. Mechanical results showed that 34% improvement in tensile modulus value was attained by the addition of 0.5 wt % CNF-GNP hybrid additive because it acted as a nucleating agent and allowed the crystal growth in the nanocomposite structure. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48347.  相似文献   

16.
Poly(vinyl chloride) (PVC)/SiO2 nanocomposites were prepared via melt mixture using a twin‐screw mixing method. To improve the dispersion degree of the nanoparticles and endow the compatibility between polymeric matrix and nanosilica, SiO2 surface was grafted with polymethyl methacrylate (PMMA). The interfacial adhesion was enhanced with filling the resulting PMMA‐grafted‐SiO2 hybrid nanoparticles characterized by scanning electron microscopy. Both storage modulus and glass transition temperature of prepared nanocomposites measured by dynamic mechanical thermal analysis were increased compared with untreated nanosilica‐treated PVC composite. A much more efficient transfer of stresses was permitted from the polymer matrix to the hybrid silica nanoparticles. The filling of the hybrid nanoparticles caused the improved mechanical properties (tensile strength, notched impact strength, and rigidity) when the filler content was not more than 3 wt %. Permeability rates of O2 and H2O through films of PMMA‐grafted‐SiO2/PVC were also measured. Lower rates were observed when compared with that of neat PVC. This was attributed to the more tortuous path which must be covered by the gas molecules, since SiO2 nanoparticles are considered impenetrable by gas molecules. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
UV-curable waterborne polyurethane (WUPU)/silica nanocomposites were prepared using various silica by phase-inversion emulsification method. TEM examinations of nanostructured films indicated that the organic modified nanosilica was well dispersed in the WUPU matrix, while the acid and alkaline silica formed much less compact, or densely aggregated structure. DMA analysis demonstrated that the WUPU/silica nanocomposite films had a broadening of the tanδ peak and shifted to higher temperature. The WUPU/silica nanocomposite films displayed enhanced storage modulus, Shore A hardness, tensile strength without sacrificing high elongation at break compared to that of the pure WUPU film. The resulting nanocomposite films are possibly interesting for the generation of waterborne UV-curable transparent coatings with scratch-resistance.  相似文献   

18.
The elastomer toughening of PA66/PA6 nanocomposites prepared from the organic modified montmorillonite (OMMT) was examined as a means of balancing stiffness/strength versus toughness/ductility. Several different formulations varying in OMMT content were made by mixing of PA6 and OMMT as a master‐batch and then blending it with PA66 and different elastomers in a twin screw extruder. In this sequence, the OMMT layers were well exfoliated in the nylon alloy matrix. The introduction of silicate layers with PA6 induced the appearance of the γ crystal phase in the nanocomposites, which is unstable and seldom appears in PA66 at room temperature and it further affected the morphology and dispersion of rubber phase resulting in much smaller rubber particles. The incorporation of POE‐g‐MA particles toughened the nanocomposites markedly, but the tensile modulus and strength were both reduced. Conversely, the use of OMMT increased the modulus but decreased the fracture toughness. The nanocomposites exhibited balanced stiffness and toughness. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
A series of waterborne-polyurethane/silica (WPU/SiO2) were prepared from isophoronediisocyanate, polyester polyol, dimethylolpropionic acid, tetraethoxysilane and 3-glycidyloxypropyl trimethoxysilane. The WPU/SiO2 dispersion had narrower particle size distribution than the pure WPU. The mechanical properties of WPU/SiO2 films were improved than the pure WPU. WPU/SiO2 films were characterized by FT-IR spectroscopy, SEM, TEM, AFM, XRD and UV-Vis spectroscopy. The results showed that WPU/ SiO2 hybrid films were found to be smooth morphology, and had good thermal stability and tunable transparence with the silica fraction in the film. Through suitable adjustment of silica content, some thin films have potential applications as the specialty materials.  相似文献   

20.
Previous research has shown that the inclusion of the spherical silica (SiO2) nanoparticles into epoxy resin can achieve simultaneous improvement of fracture toughness and modulus. However, the glass transition temperature of the nanocomposite was significantly decreased when loading the nanosilica was higher than 5 wt.%. This perhaps was caused by utilization of the ultrasonication probe in the processing of these materials. In this paper, milder processing procedures were applied to make spherical silica epoxy nanocomposites while investigating if the homogeneous dispersion and morphology of the individual silica nanoparticle dispersed in the epoxy matrix could still be achieved. The results show that even at high loading of the silica nanoparticle, such as 30 wt.% silica, the perfect morphology of the nanocomposite could still be achieved with these milder processing conditions which indicates that ultrasonication is not needed. With the use of milder processing conditions, the glass transition temperature of the nanocomposite of 5 wt.% silica loading did not change, and the drop in the Tg was minimal for silica loading up to 15%, but some effects of self-polymerization of the epoxy were noted on Tg up to 30 wt.% loading of silica. Thermal analysis and flammability testing of the resulting materials suggest that nanosilica has only an inert filler effect (dilution of fuel) on flammability reduction and char yield increase, not a synergistic decrease in heat release as is often observed for clays and carbon nanotubes/nanofibers. So the mild and easy processing procedure only achieved uniform nanoscale morphology with excellent dispersion in the final nanocomposite, but also the effect on the change in the Tg can be minimized as nanosilica loading was increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号