首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conductive electrochemical AFM images demonstrating the complex nature and structure of Nafion surface conductivity are presented. Nanoscale regions with high currents determining the overall total membrane current can be distinguished from majority domains with lower currents and non-conductive areas. The different conductive domains form ordered structures and show a specific dynamic behaviour. These observations were compared to the structural and electrical models in the literature. None of the models is able to explain all aspects of the current images. The existence of inverted micelles seems to be quite probable since the formation of agglomerates like chains and larger ordered clusters is clearly visible. This aspect is best described by the model of Schmidt-Rohr and Chen. In addition, the highly dynamic behaviour and distribution of conductive channels of Nafion leading to the formation of new current pathways also indicates the formation of different meso-phases with a high local fluctuation rate. The other discussed models also predict structural features which are in agreement with our observations like the formation of super-structures and agglomeration of fibers.The structural characterisation reflects the situation at or near the membrane surface and might differ from the bulk structure since the surface energy may have a large influence on the formation of structures during the membrane solidification process. The quite large dynamics of conductivity changes of Nafion reflected in the formation of new current pathways even at room temperature leads to the assumption that the internal structure of Nafion is subject to significant changes due to humidity and temperature variations. The local variation of individual structures may reflect the variation of concentration of hydrophilic and hydrophobic groups during membrane solidification. The minimization of surface free energy during a self-assembling process is essential for the formation of different phases and subsequent structures like chains, etc. as well as higher order clustering.  相似文献   

2.
Rafael Herrera Alonso 《Polymer》2009,50(11):2402-1351
A series of Nafion-clay nanocomposite membranes were synthesized and characterized. To minimize any adverse effects on ionic conductivity the clay nanoparticles were H+ exchanged prior to mixing with Nafion. Well-dispersed, mechanically robust, free-standing nanocomposite membranes were prepared by casting from a water suspension at 180 °C under pressure. SAXS profiles reveal a preferential orientation of Nafion aggregates parallel to the membrane surface, or normal plane. This preferred orientation is induced by the platy nature of the clay nanoparticles, which tend to align parallel to the surface of the membrane. The nanocomposite membranes show dramatically reduced methanol permeability, while maintaining high levels of proton conductivity. The hybrid films are much stiffer and can withstand much higher temperatures compared to pure Nafion. The superior thermomechanical, electrochemical and barrier properties of the nanocomposite membranes are of significant interest for direct methanol fuel cell applications.  相似文献   

3.
Ionomeric polymer transducers (sometimes called “ionic polymer-metal composites,” or “IPMCs”) are a class of electroactive polymers that are able to operate as distributed electromechanical actuators and sensors. Traditionally, these transducers have been fabricated using water-swollen Nafion membranes. This work seeks to overcome the hydration dependence of these transducers by replacing water with an ionic liquid. In the current work, two ionic liquids are studied as diluents for ionomeric polymer transducers based on Nafion membranes. The two ionic liquids used are 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMI-Tf) and 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMI-Im). These two ionic liquids were chosen for their low viscosity and high conductivity. Furthermore, although many of the physical properties of the two ionic liquids are similar, the EMI-Tf ionic liquid is water miscible whereas the EMI-Im ionic liquid is hydrophobic. These important similarities and differences facilitated investigations of the interactions between the ionic liquids and the Nafion polymer.This paper examines the mechanisms of electromechanical transduction in ionic liquid-swollen transducers based on Nafion polymer membranes. Specifically, the morphology and relevant ion associations within these membranes are investigated by the use of small-angle X-ray scattering (SAXS), Fourier transform infrared (FTIR) spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. These results reveal that the ionic liquid interacts with the membrane in much the same way that water does, and that the counterions of the Nafion polymer are the primary charge carriers in the ionic liquid-swollen films. The results of these analyses are compared to the macroscopic transduction behavior in order to develop a molecular/morphological model of the charge transport mechanism responsible for electromechanical coupling in these membranes.  相似文献   

4.
Radiation-induced graft polymerization of sulfo-containing styrene derivatives into crystalline poly(ether ether ketone) (PEEK) substrates was carried out to prepare thermally and mechanically stable polymer electrolyte membranes based on an aromatic hydrocarbon polymer, so-called “super-engineering plastics”. Graft polymerization of the sulfo-containing styrene, ethyl 4-styrenesulfonate (E4S) into a high crystalline PEEK substrate (degree of crystallinity: 32%) hardly progressed, whereas graft polymerization into a low crystalline PEEK substrate (degree of crystallinity: 11%) gradually progressed, achieving a grafting degree of more than 50% after 72 h. Oxygen radicals appeared in the ESR spectra of irradiated PEEK films, indicating that graft polymerization initiates from the phenoxy radicals generated by scission of PEEK main chains and proceeds so as to yield block type grafts. The PEEK-based polymer electrolyte membrane (PEM) converted by aqueous hydrolysis of grafted films exhibited mechanical strength (100 MPa), being 88% of the original PEEK substrates. These mechanical properties of PEEK-based PEM are much higher than those of graft-type fluorinated PEM reported previously and almost three times higher than that of Nafion (35 MPa). Wide- and small-angle X-ray scattering (WAXS and SAXS) indicated that the graft polymerization was accompanied with recrystallization of the amorphous phase of PEEK substrate, the well known solvent-induced recrystallization of amorphous PEEK solids, to form a weak lamellar structure with 8 nm spacing. Complementary SAXS and small-angle neutron scattering (SANS) observations clearly showed that the graft-type PEEK membranes possessed ion channel domains with the average distance of 13 nm, being larger than that of Nafion. Furthermore, there was a micro-structure in the ion channels with the average distance of 1.8 nm.  相似文献   

5.
Styrene grafted and sulfonated poly(vinylidene fluoride) and poly(vinylidene fluoride‐co‐hexafluoropropylene) films are candidates as electrolytes in direct methanol fuel cells. Their behaviour in water, 1 and 3 mol dm–3 aqueous methanol, and pure methanol were studied. According to SAXS results, water and methanol‐water solutions have similar effects on the membranes, i.e., the lamellar period increases and the ionic domains enlarge. Furthermore, differences in the ionic domain structures in pure methanol and water were observed. These structural changes together with dissimilar liquid uptakes in water and in methanol are reflected as changes in the conductivities. An increase in the SAXS intensity and changes in the Bragg distance of the ionic peak were observed in methanol compared to aqueous solutions. This may be related to the hydrophobicity of the CH3 group on methanol. Dissimilarities in methanol permeability through the radiation‐grafted membrane can be related to structural differences in membranes observed with SAXS. Permeabilities were observed to be lower for the radiation‐grafted membranes compared to Nafion® 115, which compensates for the higher area resistance of the experimental membranes and thus improves their performance in a fuel cell.  相似文献   

6.
The nanostructure of a perfluorinated membrane material (Nafion 117 by DuPont) is investigated as a function of strain and load by small-angle X-ray scattering (SAXS) at a synchrotron source. Two-dimensional SAXS patterns are evaluated utilizing the multi-dimensional chord distribution function (CDF). Anisotropy of the extruded material is considered. Both the ionomer domain and matrix polymer nanostructure are studied. For the neat material the classical ionomer domain model (domains as inverted micellae interconnected by channels) is confirmed and refined. Matching the plastic deformation behavior of the material, the domain structure in the relaxed and in the elongated state are found to be very similar.During elongation, ionomer channels open to form hollow ionomer layers(‘slits’) that are oriented parallel to the strain with a thickness of 1.9 nm and a long period of 3.8 nm. The slit height increases from 3 nm at elongation ε=0.5 to 6 nm at ε=1.25, whereas the slit width decreases to 1.5 nm. The ultimate structure is characterized by ensembles of not more than three slits that are in good lateral register.In the polymer matrix during elongation, cylindrical crystallites with a thickness of 2.5 nm and a most probable height of 7 nm are disrupted and parallelized with respect to the straining direction. The ultimate structure before sample failure is characterized by a broad domain height distribution ranging from a most probable domain height of 4 nm with a corresponding ultimate inclination of 40° to some perfectly parallelized domains of 20 nm height.  相似文献   

7.
陈胜洲  王松青  林维明 《化工进展》2012,31(3):541-544,557
用FeCl3化学氧化法制备了PPy/Nafion改性膜,采用浸渍-还原法在PPy/Nafion阴极侧上沉积Co金属,制得Co-PPy/Nafion电解质膜。采用TG、CV及交流阻抗谱测试了Nafion膜及改性膜的热稳定性,质子电导性和甲醇渗透性能,结果表明:PPy/Nafion及Co-PPy/Nafion改性膜具有更好的热稳定性和抗甲醇渗透性。分别以Co-PPy/Nafion改性膜、PPy/Nafion改性膜和纯Nafion膜为电解质膜,PtRu/C为阳极催化剂,Pt/C为阴极催化剂组装DMFC并考察其性能。实验结果表明:Co-PPy/Nafion改性膜组装单电池在高浓度甲醇及大电流密度的测试条件下,表现出更优异的电池性能。  相似文献   

8.
Nafion-clay hybrid membranes with a unique microstructure were synthesized using a fundamentally new approach. The new approach is based on depletion aggregation of suspended particles - a well-known phenomenon in colloids. For certain concentrations of clay and polymer, addition of Nafion solution to clay suspensions in water leads to a gel. Using Cryo-TEM we show that the clay particles in the hybrid gels form a network structure with an average cell size in the order of 500 nm. The hybrid gels are subsequently cast to produce hybrid Nafion-clay membranes. Compared to pure Nafion the swelling of the hybrid membranes in water and methanol is dramatically reduced while their selectivity (ratio of conductivity over permeability) increases. The small decrease of ionic conductivity for the hybrid membranes is more than compensated by the large decrease in methanol permeability. Lastly the hybrid membranes are much stiffer and can withstand higher temperatures compared to pure Nafion. Both of these characteristics are highly desirable for use in fuel cell applications, since a) they will allow the use of a thinner membrane circumventing problems associated with the membrane resistance and b) enable high temperature applications.  相似文献   

9.
The relationships between morphology and proton conduction for Nafion membranes and hydrocarbon-type proton exchange membranes, namely, sulfonated poly(arylene ether ether ketone) (S-PEEK) and sulfonated poly(arylene ether sulfone) (S-PES), were investigated by small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM). The direct simultaneous observation of surface morphology and active regions of proton conduction on membranes by combined high-resolution AFM phase imaging and an electrochemical technique at controlled humidity provided significant morphological information, particularly for the hydrocarbon-type membranes that exhibit few or no features on SAXS profiles. For the Nafion membranes, the active proton paths became denser and congregated with each other at over 60% RH, resulting in the formation of well-connected networks. For the hydrocarbon-type membranes, however, only the relatively small and dispersed proton paths were observed, which showed no significant change even as water content increased. We have demonstrated that the differences in microscopic morphology between the Nafion and hydrocarbon-type membranes are associated with the differences between their macroscopic proton conductivities.  相似文献   

10.
The spectroscopic and thermal properties of swollen Nafion membranes in methanol aqueous mixtures were investigated to understand the behavior of commercial electrolytes in the presence of polar solvents. Several differences were observed in the absorption processes depending on the composition of the solvent. Deconvolution methods were applied to study specific contributions of solvents and polymer groups based on Fourier transform infrared spectroscopy and thermogravimetric analysis. The results evidence compositional effects on the interactions between solvents and Nafion. A major influence of the nonpolar domains (hydrophobic regions) in the absorption of methanol together with a reduction of the interactions with sulfonate groups was observed. Such changes are accompanied by a modification of the cluster morphology of the equilibrated membranes evaluated by differential scanning calorimetry. These findings can be useful to improve the knowledge on Nafion's microstructure in the presence of polar solvents. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
以凝胶贴附法,在Nation膜两侧贴附细菌纤维素(BC)膜,制备出BC/Nation/BC夹心复合膜,以期结合Nation膜的良好导电性和BC膜的优秀阻醇性,制备新型阻醇质子交换膜。利用扫描电镜、热重分析对其形态结构和热稳定性进行研究,并对夹心膜的尺寸稳定性、质子传导率和甲醇渗透率进行表征。结果发现,复合膜的夹心结构紧密,热稳定性良好,尺寸稳定性比市售的Nation膜有很大改善,提高了43%。夹心膜的质子传导率随温度的升高明显上升,虽略低于Nation膜,但是甲醇渗透率明显降低一个数量级,阻醇性能得到了很大改善。组装成电池后,单电池开路电压达到922mV,最大发电功率密度为7.2mW/cm^2。该结果表明夹心复合膜作为新型质子交换膜应用于直接甲醇燃料电池中具有很大潜力。  相似文献   

12.
Nafion has been widely used in electrochemistry, but there are only a few reports on its application in other fields, such as, gas separation, even though it exhibits good performance. The primary reason for that is the high cost of Nafion and making a composite membrane with a thin Nafion layer is a potential solution to solve this problem. In this study, a novel Nafion-PTFE composite hollow fiber membrane, which had a thin (~5 μm) and detect-free Nafion layer on PTFE surface, without Nafion filling substrate pores was developed, differing from the reported ones in which Nafion resin was required to impregnate into porous PTFE membrane as thorough as possible to ensure the ion conductivity and operation stability. The surface morphology, crystallite, solubility in ethanol/water mixture, and water uptake of membranes were systemically investigated. The gas permeance tests were also conducted. The permeances of different gasses of prepared composite membranes were significantly enhanced compared with the commercial membranes due to the decrease of Nafion thicknesses, while the selectivity remained the same, verifying the detect-free structure of Nafion layer on PTFE substrate. This study provided a good reference for the preparation and application of low-cost Nafion composite membranes.  相似文献   

13.
Palladium/Nafion composite membranes were synthesized by supercritical impregnation method to reduce methanol crossover in direct methanol fuel cells. The palladium complexes used in this study were palladium(II) acetylacetonate, palladium(II) hexafluoroacetylacetonate, and palladium (II) bis(2,2,6,6-tetramethyl-3,5-heptane-dionato). The palladium complexes with various loading amounts from 0.010 to 0.050 g in a high-pressure vessel were dissolved in supercritical CO2, and impregnated into Nafion membranes.The SEM images indicated that the palladium complexes were successfully deposited into Nafion membrane, and there were no problems such as cracking and pinhole. The EDX analysis showed that the palladium particles were distributed both at the membrane surface and also extended deeper into the membrane. The TEM images indicated that thin dense band of agglomerated Pd particles can be observed near the membrane surface, and a significant number of isolated Pd particles can be seen deeper into the membrane, when Pd(II) acetylacetonate was used as palladium complex. When palladium(II) hexafluoroacetylacetonate and palladium (II) bis(2,2,6,6-tetramethyl-3,5-heptane-dionato) were used, dense band of agglomerated Pd particles cannot be observed near the membrane surface, and small Pd particles were observed inside the membranes.The XRD analysis indicated that the crystalline peak of Nafion membrane at 2θ = 17° increased with the supercritical CO2 treatment. It means that the degree of crystallinity for Nafion membrane increased by supercritical CO2. The metal Pd peak at 2θ = 40° was observed for the Pd/Nafion membranes.The methanol crossover was reduced and the DMFC performance was improved for the Pd/Nafion membranes compared with Nafion membrane at 40 °C. The successful preparation of Pd/Nafion membranes by supercritical CO2 demonstrated an effective alternative way for modifying membranes and for depositing electrode catalytic nanoparticles onto electrolyte.  相似文献   

14.
化学交联与热处理对聚乙烯醇膜性能的影响   总被引:1,自引:0,他引:1  
采用相转化法制备聚乙烯醇膜,分别研究了化学交联以及热处理对膜结构和性能的影响,利用红外光谱获得膜的交联度和结晶度。结果表明随着处理时间的延长,膜的交联度或者结晶度增加;溶涨试验结果表明热处理后膜的孔隙率下降,而化学交联对膜的孔隙率影响不大;力学性能测定表明膜在干态与湿态下,力学性能差别巨大,化学交联的膜在干态下的性能要大大好于湿态下的力学性能,而热处理的膜正好相反,热处理后膜的机械性能湿态要好于干态。  相似文献   

15.
Assignment of the i.r. spectrum of Nafion cation exchange membranes was made possible by use of i.r. absorption and reflectance (ATR) spectroscopy. Shifts in the water and sulphonic vibrations occurring upon exchange of various counterions were compared with those occurring in a polyethylene sulphonic acid and polystyrene sulphonic acid membrane. The type of binding of the cations and the possibility of cluster formation are discussed. A dimeric iron unit FeOFe was identified in the Nafion membrane.  相似文献   

16.
Proton conductivity is strictly proportional to water uptake in state-of-the art radiation-grafted copolymer membranes. However, high water uptake can compromise mechanical integrity and operation lifetime. The challenge of optimizing water content intimately relates to the phase segregated aqueous domains of the hydrated membrane. Comprehending the nano-scale structure and morphology of the aqueous phase and, more importantly, the impact on proton conductivity would be an asset when developing new materials. Therefore, we combined small-angle neutron scattering, the technique of clipping of random waves, and the technique of tracer random walk, and present an approach that correlates long-range proton diffusion with the nano-scale tortuosity of the aqueous phase. Our results suggest that in disordered domains the decrease in long-range proton diffusivity cannot be prevented upon decreasing water content. Spatial order, however, has beneficial influence, and the loss in proton conductivity is expected to be less critical.  相似文献   

17.
Silica was succesfully incorporated into cation exchange polymer membranes, CL-25T and Nafion 417, utilizing sol-gel process. As dipping time increased, increase in silica uptake in membrane was observed. In Nafion 417 membrane, no relationship was found between the silica uptake and the change in ion exchange capacity. But CL-25T which has larger pores than Nafion 417 shows proportional decrease in ion exchange capacity with increasing silica uptake. It suggests that the pore structure of membrane and the size control of silica sol are important to modify the structure of composite membranes. In CL-25T membranes modified by silica, the transport rate of IPA (isopropyl alcohol) increased with increasing OH- concentration on the pore surface.  相似文献   

18.
We investigated the water present in a series of radiation‐grafted fluoropolymers with similar poly(styrene sulfonic acid) (PSSA) contents with the aim of determining the influence of the initial fluoropolymer. Radiation‐grafted membranes were compared with Nafion 117 and 105. Sorption curves and differential scanning calorimetry thermograms showed that all the membranes contained the same number of water molecules tightly bound to the sulfonic acid groups; this water did not freeze. In radiation‐grafted membranes, the content of freezing water absorbed from the liquid‐phase water varied according to the swelling abilities of the membrane, which were dependent on the initial fluoropolymer. Larger pores accompanied high water uptakes and high conductivity. The amount of water absorbed from the vapor phase was similar for all radiation‐grafted membranes with similar PSSA contents, irrespective of matrix material. Nafion membranes had higher conductivities at intermediate hydration levels, and the relaxation times measured by NMR were longer than for the radiation‐grafted materials. This suggests that the channels for water and proton conduction are different in the two types of materials. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 33–42, 2002  相似文献   

19.
In this work, the application of heterogeneous photo-electro-Fenton processes using iron supported on Nafion membranes and ion exchange amberlite and purolite resins is studied. Spectroscopic and TOC results using as a model pollutant an aqueous Orange II dye solution indicate that the process can be carried out with any of the iron supporting materials under study. While the resins can incorporate between 59 and 65 mg Fe/g of substrate, a Nafion membrane can fix 45 mg Fe/g of supporting material. Iron desorption analysis after a photo-electro-Fenton degradation test on the other hand, indicates that the ion exchange resins and the Nafion membrane hold more than 90% of iron. An alkaline rinse after the activation exchange process for the amberlite resin and the Nafion membrane, results in a larger stability of the fixed iron species.  相似文献   

20.
Nafion membranes of two different equivalent weights (eq. wt) were evaluated as a separator in an alkaline electrolyser with nickel screen electrodes in both KOH and NaOH electrolytes over the concentration range of 10–30 wt % and at temperatures from 25 to 160° C. For the same current densities, the cell voltage with 30% KOH electrolytes was more than twice that with 30% NaOH. This result correlates with the water content of the membrane which is almost twice as high in NaOH electrolytes. Thinner membranes and membranes of lower equivalent weight give lower cell voltages. Materials and performance considerations indicate that a membrane of 1000 eq. wt is the optimum separator for an alkaline electrolyser. Indications are that LiOH may be an even better electrolyte than NaOH for use with Nafion membranes. Further improvements in performance can be expected by membrane pretreatment such as exposing the membrane to elevated temperature in water. Nafion membranes have excellent physical and mechanical properties in alkaline electrolyte and can be used at temperatures up to 250° C.Work performed under the auspices of the US Department of Energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号