首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ultra-thin films of cationic amphiphilic block and statistical copolymers were applied on silica surfaces from aqueous solutions through electrostatic interactions, and the resulting modification in the wettability of the surfaces was studied. A copolymer series from 2-(dimethylamino)ethyl methacrylate with methyl methacrylate and butyl methacrylate was polymerized by ATRP. Subsequently, the conformation of the polymers in aqueous solutions was studied by surface tension measurements, dynamic light scattering, 1H NMR and cryogenic transmission electron microscopy. Unimeric conformation, equilibrium micelles or frozen micellar structures were observed, depending on polymer composition and the ionic strength of the solution. The polymers were applied on silica from aqueous solutions by either spin coating or adsorption. The formed ultra-thin film surfaces were studied by AFM and water contact angle measurements. The spin-coated surfaces were highly hydrophilic with rapidly dropping contact angles, whereas the surfaces prepared by adsorption had stable water contact angles between 30-60°, depending on polymer. The difference between the spin-coated and adsorbed surfaces is explained by the formation of a monolayer in the adsorbed surfaces.  相似文献   

2.
Uma Chatterjee 《Polymer》2005,46(24):10699-10708
Amphiphilic di- and tri-block copolymers of poly(methyl methacrylate) (PMMA) and poly(2-dimethylamino)ethyl methacrylate (PDMAEMA) have been synthesized by atom transfer radical polymerization (ATRP) at ambient temperature (35 °C) in the environment-friendly solvent, aqueous ethanol (water 16 vol%) using CuCl/o-phenanthroline as the catalyst. The PDMAEMA blocks are contaminated with ethyl methacrylate (EMA) residues to the extent of 1-2 mol% of DMAEMA depending on the length of the PDMAEMA block. The EMA forms through the autocatalyzed ethanolysis of the DMAEMA monomer and undergoes random copolymerization with the latter. The rate of ethanolysis is unexpectedly greater in the aqueous ethanol than in neat ethanol, which has been attributed to the higher polarity of the former than of the latter. In contrast to the ethanolysis no hydrolysis of DMAEMA in the aqueous ethanol medium could be detected for 133 h. The block copolymers form micelles in water. Their solubility and CMC in neutral water have been studied. Dynamic light scattering (DLS) studies reveal that for a fixed degree of polymerization (DP) of the PMMA block the hydrodynamic diameter of the micelles in methanolic water (water 95 vol%) increases at a faster rate with the DP of the PDMAEMA block when it is much greater than that of the PMMA block compared to when it is less than or close to that of the latter.  相似文献   

3.
A series of novel amphiphilic fluorescent CBABC-type pentablock copolymers (Py-PMMA-PEG4600-PMMA-Py) were prepared from BAB-type amphiphilic triblock copolymer (PMMA-PEG4600-PMMA) as macroinitiator with various contents of 1-(methacryloyloxyethylamino-carboxylmethyl) pyrene (PyMOI) by atom transfer radical polymerization (ATRP) in toluene using CuBr/2,2-bipyridine as catalyst system. Triblock copolymer (PMMA-PEG4600-PMMA) was prepared by ATRP and obtained from Br-PEG4600-Br as macroinitiator with methyl methacrylate in tetrahydrofuran using the same catalyst. The molecular weights of pentablock copolymers which were reinitiated by PMMA-PEG4600-PMMA macroinitiator were calculated from 1H NMR spectra up to 42,400 gmol−1. The polydispersity of pentablock copolymers obtained from GPC analysis was narrow between 1.10 and 1.38. The crystallinity of triblock copolymer (PMMA-PEG4600-PMMA) was decreased slightly with incorporating PMMA segment. Introducing the bulky pyrene substituent into pentablock copolymer, the melting temperature was not observed and all pentablock copolymers showed amorphous patterns in wide-angle X-ray scattering (WAXS) due to decrease in the degree of crystallinity of polymer chain because of disturbing regular packing. The temperatures at 10% weight loss (Td10), examined by TG analysis, showed values ranging from 265 to 323 °C in nitrogen and 264 to 313 °C in air. Fluorescence spectra of Py-PMMA-PEG4600-PMMA-Py exhibited stronger excimer emission at ca. 480 nm due to the aggregations of pyrene group formed via interaction of the hydrophobic chains. The more content of PyMOI segment in pentablock copolymers can obtain the higher emission intensity ca. 480 nm. When there were higher PyMOI contents (84.9 wt% PyMOI) in pentablock copolymers, they formed larger aggregates (210 nm) in SEM micrographs. On the other hand, while increasing the concentration of the polymer solution in THF, the morphology was changed from spherical (0.1 mg/mL) to chainlike (1.0 mg/mL) aggregates.  相似文献   

4.
Ying Qian Hu  Bong Sup Kim 《Polymer》2007,48(12):3437-3443
The polymerization of 2-(diisopropylamino)ethyl methacrylate (DPA) by RAFT mechanism in the presence of 4-cyanopentanoic acid dithiobenzoate in 1,4-dioxane was studied. The DPA homopolymer was employed as a macro chain transfer agent to synthesize pH-sensitive amphiphilic block copolymers using poly(ethylene glycol) methyl ether methacrylate (PEGMA) as the hydrophilic block. 1H NMR and GPC measurements confirmed the successful synthesis of these copolymers. Potentiometric titrations and fluorescence experiments proved that the copolymers underwent a sharp transition from unimers to micelles at a pH of ∼6.7 in phosphate buffered saline solutions. It was found that the hydrophilic/hydrophobic balance of these block copolymers had no apparent effect on their pH-induced micellization behaviors. The DLS investigation revealed that the micelles have a mean hydrodynamic diameter below 60 nm with a narrow size distribution.  相似文献   

5.
Amphiphilic ethyl cellulose (EC)-g-poly(acrylic acid) (PAA) copolymers were synthesized by atom transfer radical polymerization (ATRP). Firstly, ethyl cellulose macro-initiators with the degree of the 2-bromoisobutyryl substitution of 0.04 and 0.25 synthesized by the esterification of the hydroxyl groups remained in EC macromolecular chains and the 2-bromoisobutyryl bromides. Secondly, tert-butyl acrylate was polymerized by ATRP with the ethyl cellulose macro-initiator and EC-g-PtBA copolymers were prepared. Finally, the EC-g-PAA copolymers were prepared by hydrolyzing tert-butyl group of the EC-g-PtBA copolymers. The grafting copolymers were characterized by means of GPC, 1H NMR and FTIR spectroscopies. The molecular weight of graft copolymers increased during the polymerization and the polydispersity was low. A kinetic study showed that the polymerization was first-order. Meanwhile, EC-g-PAA copolymers were self-assembled to micelles or particles with diameters of 5 nm and 100 nm in water (pH = 10) when the concentration was 1.0 mg/ml.  相似文献   

6.
Vural Bütün 《Polymer》2003,44(24):7321-7334
2-(dimethylamino)ethyl methacrylate (DMA) was block copolymerized in turn with three other tertiary amine methacrylate comonomers, namely 2-(diethylamino)ethyl methacrylate (DEA), 2-(diisopropylamino)ethyl methacrylate (DPA) and 2-(N-morpholino)ethyl methacrylate (MEMA), using group transfer polymerization (GTP). The DMA residues of each of these diblock copolymers were selectively betainized using 1,3-propane sultone under mild conditions to yield a series of novel betaine diblock copolymers. These selectively betainized copolymers could be dissolved molecularly without co-solvents in aqueous media at room temperature, with micellization occurring reversibly on judicious adjustment of the solution pH, temperature or electrolyte concentration. In all three cases, stable block copolymer micelles were formed with betainized-DMA coronas and hydrodynamic diameters of 10-46 nm. The selective betainization of the DMA residues dramatically reduces the surface activity and increase the solubility of the tertiary amine methacrylate block copolymers (DMA-DEA, DMA-DPA and DMA-MEMA).  相似文献   

7.
Here, the dendritic chloric poly(benzyl ether) (G1-Cl, G2-Cl and G3-Cl) as the macroinitiator for the controlled atom transfer radical polymerization (ATRP) of methyl methylacrylate was investigated. Polymers obtained were characterizated by GPC, 1H NMR, FT-IR, TGA and DSC. These dendritic-linear block polymers that consist of linear and dendritic segments have very good solubility in common organic solvents at room temperature. In a selective solvent (THF/H2O), polymers can self-assembled into the micelles that have a spherical morphology in shape due to the lowest of the surface energies.  相似文献   

8.
In this work, the reversible addition-fragmentation chain transfer (RAFT) polymerization was utilized to synthesize the amphiphilic diblock copolymers of poly(methacrylic acid)-b-poly(2,2,2-trifluoroethyl methacrylate) (PMAA-b-PTFEMA) via one-pot two-step reaction protocol. The controlled radical polymerization of MAA monomer was first carried out in pure water by using 4-cyanopentanoic acid dithiobenzoate (CADB) as chain transfer agent. Subsequently, the as-synthesized PMAA homopolymers with dithiobenzoate end-groups were employed as macro-CTA and chain-extended in situ with the hydrophobic TFEMA monomer. The reactions were carried out in 1,4-dioxane/water medium. Both the polymerization of PMAA and PTFEMA blocks showed the well controllability on the molecular weighs and distributions. It was found that the amphiphilic diblock copolymers formed the stable spherical particles via the polymerization-induced self-assembly. Meanwhile, the effect of various parameters, such as the concentration ratio of TFEMA monomer over PMAA macro-CTA, the solvent condition (different ratio of 1,4-dixane/water), and the pH, on the RAFT polymerization of TFEMA monomer were investigated in detail. Their kinetic results suggested that the propagation of TFEMA monomer on the macro-CTA was performed at the particle/water interfaces. The concentration of chain transfer agents at the interfaces determined the polymerization rate. Finally, the stability of the fluorinated polymer dispersions was also evaluated in this work.  相似文献   

9.
Poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) samples were synthesized via aqueous atom transfer radical polymerization with DPn of 35, 151, 390, and 546 and dispersity of 1.13, 1.17, 1.20, and 1.18, respectively. All samples were exposed to temperature and pH variations at different concentration of polymer and salt (NaCl). Results indicated that cloud point (Tcl) can be controlled by changing DPn, polymer concentration, and ionic strength of solution. According to results, Tcl of the PDMAEMA chains shifted to lower temperatures with increasing solution pH at all molecular weight ranges due to deprotonation of tertiary amine groups in polymer structure. However, higher molecular weight polymers were more sensitive to pH variation especially in alkaline media. Also, higher polymer concentration acted as driving force to decrease cloud point of samples and formation of aggregates that was more predominant for higher molecular weights at alkaline media. Tcl of PDMAEMA chains decreased with increasing ionic strength even at low pH values for low molecular weight polymers.  相似文献   

10.
Meizhen Yin  Wolf D. Habicher 《Polymer》2005,46(10):3215-3222
The polymerization by ATRP of hydroxy and amino functional acrylates and methacrylates with tert-butyldimethylsilyl (TBDMS) or tert-butyloxycarbonyl (BOC) protective groups has been studied for the first time achieving high control over molecular weight and polydispersity. Detailed investigation of the ATRP of 2-{[tert-butyl(dimethyl)silyl]oxy}ethyl acrylate (M2b) in bulk and 2-[(tert-butoxycarbonyl)amino]ethyl 2-methylacrylate (M3a) in diphenyl ether (DPE) showed that the type of ligand plays an important role on either the polymerization rate or the degree of control of the polymerization. Among the ligands used, N,N,N,′NN″-pentamethyl diethylenetriamine (PMDETA) was the most suitable ligand for ATRP of all functional acrylates and methacrylates. The kinetics of M2b and M3a polymerization using PMDETA as a ligand was reported and proved the living character of the polymerization. Well-defined block copolymers based on a halogen terminated polystyrene (Pst) macroinitiator and the functional acrylate and methacrylate monomers were successfully synthesized by ATRP, and subsequent deprotection of the protective groups from the acrylate or methacrylate segment afforded amphiphilic block copolymers with a specific solubility behavior.  相似文献   

11.
Semifluorinated block copolymers of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and poly(fluorooctyl methacrylates) (PFOMA) were prepared using group transfer polymerisation via sequential monomer addition. Wide ranges of copolymers were obtained with good control over both molecular weight and composition by adjusting the monomers/initiator ratio. The micellar characteristics of the copolymers in water and chloroform were investigated by quasi-elastic light scattering and transmission electron microscopy. The size and morphologies of micelles were greatly influenced by copolymer composition, pH, and temperature. In addition, the solubility of copolymers and the formation of water-in-carbon dioxide (W/C) microemulsions were described in terms of the cloud points. The block copolymers exhibited the excellent ability of stabilizing W/C microemulsions.  相似文献   

12.
B.W. Mao  Y.Y. Gan 《Polymer》2006,47(9):3017-3020
Well-defined high molecular weight poly[2-(dimethylamino)ethyl methacrylates] [poly(DMAEMA)s] with molar masses up to ∼1×106 g/mol were successfully synthesized via atom transfer radical polymerization (ATRP). This was achieved by using p-toluenesulfonyl chloride(p-TsCl)/CuCl/1,1,4,7,10,10-hexamethyl-triethylenetetramine(HMTETA) initiator/catalyst complex in methanol/water mixture. Well-controlled/‘living’ behavior was demonstrated throughout the reaction, up to high monomer conversion. The PDI value remained low at 1.26 even for a polymer with very high molecular weight at 1.1×106 g/mol. We believe this is the first successful case where controlled ATRP produces a polymer with molar mass exceeding a million!  相似文献   

13.
Novel, monodispersed, and well‐defined ABA triblock copolymers [poly(dimethylamino ethyl methacrylate)–poly(ethylene oxide)–poly(dimethylamino ethyl methacrylate)] were synthesized by oxyanionic polymerization with potassium tert‐butanoxide as the initiator. Gel permeation chromatography and 1H‐NMR analysis showed that the obtained products were the desired copolymers with molecular weights close to calculated values. Because the poly(dimethylamino ethyl methacrylate) block was pH‐ and temperature‐sensitive, the aqueous solution behavior of the polymers was investigated with 1H‐NMR and dynamic light scattering techniques at different pH values and at different temperatures. The micelle morphology was determined with transmission electron microscopy. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
A series of amphiphilic poly(ethylene oxide)-b-poly(n-alkyl glycidyl carbamate)s-b-poly(ethylene oxide) triblock copolymers were synthesized by reaction between poly(ethylene oxide)-b-polyglycidol-b-poly(ethylene oxide) precursor copolymer and four n-alkyl isocyanates: ethyl, propyl, butyl and pentyl. After dissolution in water at room temperature the copolymers spontaneously form micelles. The critical micellization concentrations were determined by UV-VIS spectroscopy. The dimensions of the micelles, the aggregation numbers, and in some cases the micellar shape were determined by dynamic and static light scattering in a relatively broad temperature range. Special attention has been paid to the influence of the number of the carbon atoms in the alkyl chains, and respectively, the relative hydrophobicity of the middle block upon the self-association process. Clouding transition was observed for all of the copolymers, the clouding point being dependent upon the length of the alkyl chain.  相似文献   

15.
New temperature sensitive AB, ABA, and BAB amphiphilic block copolymers consisting of hydrophilic poly(ethylene oxide) and hydrophobic poly(ethyl glycidyl carbamate) blocks were synthesized by anionic polymerization followed by chemical modification reactions. The self-association of the block copolymers in aqueous media was studied by UV-vis spectroscopy and dynamic and static light scattering. The obtained block copolymers spontaneously form micelles in aqueous media. The critical micellization concentration varied from 0.5 to 4 g/L depending on the copolymer architecture and composition. The influence of the temperature upon the self-association of the block copolymers was investigated. The increase of temperature did not affect the value of the critical micellization concentration, but led to the formation of better defined micelles with narrow size distribution.  相似文献   

16.
Erwan Nicol 《Polymer》2005,46(7):2020-2028
Poly(ethylene oxide) monomethylether was functionalized by alkyl chains of various lengths (l=10-19 methylene groups) bearing a polymerizable methacrylate moiety. Each synthesis step on the polymer gives quantitative functionalization rates. The self-assembly of the amphiphilic polymers in water was studied by light scattering for various end-groups. Sterical and polar effects were shown to influence the micellization step. The cores of the micelles formed by PEO-Cl-methacrylate were irreversibly cross-linked by UV irradiation. Star polymers that are stable under dilution in good solvent are obtained after 1-min irradiation. The hydrodynamic radius and the molar mass of the nanoparticles depend on the amount of photoinitiator introduced in the cores.  相似文献   

17.
A cellulose-based macro-initiator, cellulose 2-bromoisobutyrylate, for atom transfer radical polymerization (ATRP) was successfully synthesized by direct homogeneous acylation of cellulose in a room temperature ionic liquid, 1-allyl-3-methylimidazolium chloride, without using any catalysts and protecting group chemistry. ATRP of methyl methacrylate and styrene from the macro-initiator was then carried out. The synthesized cellulose graft copolymers were characterized by FTIR, 1H NMR and 13C NMR spectroscopies. The grafted PMMA and PS chains were obtained by the hydrolysis of the cellulose backbone and analyzed by GPC. The results obtained from these analytical techniques confirm that the graft polymerization occurred from the cellulose backbone and the obtained copolymers had grafted polymer chains with well-controlled molecular weight and polydispersity. Through static and dynamic laser light scattering and TEM measurements, it was found that the cellulose graft copolymer in solution could aggregate and self-assembly into sphere-like polymeric structure.  相似文献   

18.
The current study synthesized amphiphilic thermal/pH-sensitive block copolymers PNiPAAm-b-PHpr by condensation polymerization of trans-4-hydroxy-l-proline (Hpr) initiated from hydroxy-terminated poly(N-isopropylacrylamide) (PNiPAAm) as the macroinitiator in the presence of the catalyst, SnOct2. 1H NMR, FTIR, and gel permeation chromatography (GPC) characterized these copolymers. Their solutions showed reversible changes in optical properties: transparent below a lower critical solution temperature (LCST) and opaque above the LCST. The LCST values depended on the polymer composition and the media. With critical micelle concentrations (CMCs) in the range of 1.23-3.73 mg L−1, the block copolymers formed micelles in the aqueous phase owing to their amphiphilic characteristics. Increased hydrophobic segment length or decreased hydrophilic segment length in an amphiphilic diblock copolymer produced lower CMC values. The current work proved the core-shell structure of micelles by 1H NMR analyses of the micelles in D2O. Transmission electron microscopy analyzed micelle morphology, showing a spherical core-shell structure. The micelles had an average size in the range of 170˜210 nm (blank), and 195˜280 nm (with drug). Observations showed high drug entrapment efficiency and drug-loading content for the drug micelles.  相似文献   

19.
This paper describes the free radical dispersion homopolymerisation of 2-(dimethylamino) ethyl methacrylate (DMA) and copolymerisation of DMA with methyl methacrylate (MMA) in supercritical carbon dioxide (scCO2). The polymerisations are performed in the presence of two commercially available stabilisers, poly(dimethylsiloxane) monomethacrylate macromonomer (PDMS-mma) and the carboxylic acid terminated perfluoropolyether (Krytox 157FSL). Dry, fine powdered polymer product was produced for the copolymer under optimised conditions, but only aggregated solid is formed for homo poly(DMA). The effect of reaction time, stabiliser, copolymer composition and reaction pressure on the yield, molecular weight and morphology of the copolymers has been investigated.  相似文献   

20.
Zhongyu Li 《Polymer》2006,47(16):5791-5798
A novel well-defined amphiphilic graft copolymer of poly(ethylene oxide) as main chain and poly(methyl acrylate) as graft chains is successfully prepared by combination of anionic copolymerization with atom transfer radical polymerization (ATRP). The glycidol is protected by ethyl vinyl ether first, then obtained 2,3-epoxypropyl-1-ethoxyethyl ether (EPEE) is copolymerized with EO by initiation of mixture of diphenylmethyl potassium and triethylene glycol to give the well-defined poly(EO-co-EPEE), the latter is deprotected in the acidic conditions, then the recovered copolymer [(poly(EO-co-Gly)] with multi-pending hydroxyls is esterified with 2-bromoisobutyryl bromide to produce the ATRP macroinitiator with multi-pending activated bromides [poly(EO-co-Gly)(ATRP)] to initiate the polymerization of methyl acrylate (MA). The object products and intermediates are characterized by NMR, MALDI-TOF-MS, FT-IR, and SEC in detail. In solution polymerization, the molecular weight distribution of the graft copolymers is rather narrow (Mw/Mn < 1.2), and the linear dependence of Ln [M0]/[M] on time demonstrates that the MA polymerization is well controlled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号