共查询到20条相似文献,搜索用时 15 毫秒
1.
A straightforward method for determination of the hydration number of polymer in aqueous solution based on ice-melting technique of DSC is proposed. The simple yet precise method has been applied to determine the hydration number of poly(vinyl alcohol) (PVA) in aqueous solution covering a wide range of concentrations, from 0.005 to 0.3 g(solute)/g(solution), for three samples with different molar masses. The hydration number of PVA maintains a constant lower value of 2.5 when the concentration exceeds 0.2 g(solute)/g(solution). It increases to a value of 7 when the concentration decreases to the overlap concentration C∗ of the polymer, where C∗ was estimated as the reciprocal of its intrinsic viscosity. For solutions of C < C∗, the hydration number keeps constant again at the value of 7. This behavior evidently demonstrates that PVA has two hydration states, one occurs at the dilute regime and the other occurs at concentrated regime. The concentration dependent transition from one state to another is treated mathematically by a quantitative formula which involves two parameters: one denotes the transition concentration and the other denotes the width of the transition region. The transition concentration decreases linearly with increasing molar mass resembling the behavior of molar mass dependence of overlap concentration. The structural features for the two states of hydrated PVA are briefly discussed. 相似文献
2.
3.
This article studied the compatibility of poly(vinyl alcohol) (PVA) with poly(diallyldimethylammonium chloride) (PDADMACl) in a dilute aqueous solution. At a total mixture concentration and a constant molecular weight of PDADMACl, it was found that interpolymer associations increase with the molecular weight and decrease with the degree of hydrolysis of the PVA sample (87–89 and 98–99%). From these results, it can be deduced that the compatibility of PVA and PDADMACl is due to specific intermolecular interactions that could be assigned mainly to electrostatic interactions between hydroxyl groups within PVA chains and ion atoms within PDADMACl. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 433–435, 2002 相似文献
4.
Poly(vinyl alcohol)-borate (PVA-borate) aqueous solutions properties with PVA concentrations ranging from 2 to 60 g/L and borax concentrations of 0.0 and 0.2 M were investigated at room temperature using static and dynamic light scattering (SLS and DLS), and dynamic viscoelasticity measurements. Light scattering and viscoelasticity data revealed that all the PVA-borate aqueous systems, except those with [PVA]≥40 g/L and [borax]=0.2 M, behaved as solutions. For PVA-borate aqueous systems with [PVA]≥40 g/L and [borax]=0.2 M, light scattering data revealed that these systems behaved like gels, but viscoelasticity data showed that these systems were in flow states. The experimental data suggest that PVA-borate aqueous systems with [PVA]≥40 g/L and [borax]=0.2 M are thermoreversible gels with finite equilibrium life time of thermoreversible borate-PVA di-diol crosslinks. The thermoreversible crosslinks can be observed by the non-perturbing light scattering technique but not by the pertubing rheometric method. These results indicate the advantage of light scattering relative to rheometers for studying the physical or reversible crosslink gels. 相似文献
5.
Understanding the swelling properties of hydrogels and how they affect the hydrogel's morphology is of fundamental importance in the development of hydrogel-based artificial muscles, bio-actuators, sensors and other devices. In this paper, the swelling behavior of PVA-PAA hydrogel films in saline water and in buffer solutions of different pH values was investigated. It was observed that the swelling factor of the hydrogel decreases when the ionic strength of the solvent solution increases. Scanning Electron Microscopy (SEM) revealed structures with different pore shapes and sizes depending on the type of solution used for hydration. In saline water, Energy Dispersive X-Ray (EDS) analysis indicated the formation of NaCl crystals within the polymeric network. Finally, the PVA-PAA hydrogel was used as an actuator to strain a fiber Bragg grating sensor, thus providing an indirect measurement of the pH value of the surrounding solution. 相似文献
6.
We report the preparation of poly(vinyl alcohol) (PVA) hydrogels obtained through freezing-thawing cycles. The viscoelastic properties of these gels using parallel-plate shear mode were evaluated as a function of temperature, time, degree of swelling, concentration and the number of freezing-thawing cycles. The storage modulus was analyzed on the basis of a theoretical model based on the scaling approach. These results provide additional evidence for a non-crystalline nature of the structure of PVA cryogels.Furthermore, PVA ferrogels have been prepared from PVA aqueous solutions and a ferrofluid through freezing-thawing cycles. The viscoelastic properties of these materials have been evaluated. It is shown that the variation of the storage modulus with ferrofluid concentration cannot be fitted using classical theories what has been attributed to the small dimensions of the particles in the ferrogels and to the magnetic interactions between particles. 相似文献
7.
E.El ShafeeH.F Naguib 《Polymer》2003,44(5):1647-1653
Poly(vinyl alcohol) (PVA) networks of different cross-linking densities were prepared by reaction with hexamethylene diisocyanate in solution and casting. The dynamic-mechanical properties of PVA films have been investigated in the temperature range of −150 to +150 °C. Two relaxations processes labeled α and β in order of decreasing temperature were observed. The α-relaxation shifts to lower temperature and the average molecular weight between cross-links decreases with increasing cross-linking density. Isothermal sorption from vapor and liquid water allowed determination of the Flory-Huggins interaction parameter between water and the polymer chain segments, which decreased with the water activity in the hydrogel and increased with the cross-linking density as a consequence of the hydrophobic character of the cross-linking agent. The water diffusion coefficients, D, in the networks obtained by means of dynamic sorption experiments increased with increasing water activity. This behavior is interpreted in terms of plasticization of the polymer by water molecules. 相似文献
8.
J.Z YiS.H Goh 《Polymer》2003,44(6):1973-1978
Poly(methylthiomethyl methacrylate) (PMTMA) is miscible with poly(vinyl alcohol) (PVA) over the whole composition range as shown by the existence of a single glass transition temperature in each blend. The interaction between PMTMA and PVA was examined by Fourier transform infrared spectroscopy, solid-state nuclear magnetic resonance spectroscopy and X-ray photoelectron spectroscopy. The interactions mainly involve the hydroxyl groups of PVA and the thioether sulfur atoms of PMTMA, and the involvement of the carbonyl groups of PMTMA in interactions is not significant. The measurements of proton spin-lattice relaxation time reveal that PMTMA and PVA do not mix intimately on a scale of 1-3 nm, but are miscible on a scale of 20-30 nm. In comparison, we have previously found that PMTMA is miscible with poly(p-vinylphenol) and the two polymers mix intimately on a scale of 1-3 nm. 相似文献
9.
A facile preparation of poly(vinyl alcohol) (PVOH) hydrogels and their derivative PVOH/montmorillonite clay aerogels is reported, using water as solvent and divinylsulfone as crosslinking agent, making use of an environmentally friendly freeze drying process. The materials exhibit significantly increased mechanical properties after crosslinking. The compressive modulus of an aerogel prepared from an aqueous suspension containing 2 wt% PVOH/8 wt% clay increased 29-fold upon crosslinking, for example. Crosslinking of the polymer/clay aerogels decreased the onset decomposition temperature as measured by thermogravimetric analysis, and generated a more continuous structure at higher clay contents. Such polymer/clay aerogels are promising materials for low flammability applications. 相似文献
10.
A surface modification technique was developed for the covalent immobilization of poly(vinyl alcohol) (PVA) hydrogel onto poly(ethylene terephthalate) (PET) to improve the biocompatibility of the film. The PET film was first graft copolymerized with poly(ethylene glycol) monomethacrylate (PEGMA) in the presence of ethylene glycol dimethacrylate (EGDMA) as crosslinker, and then oxidized with a mixture of acetic anhydride (Ac2O) and dimethyl sulfoxide (DMSO) to produce aldehyde groups on the PET surface. Finally, the prepared PVA solution was cast onto the film and covalently immobilized on the film through the reaction between the aldehyde groups on the PET film and the hydroxyl groups of PVA. The good attachment of the PVA layer to the PET film was confirmed by observing the cross-section of the PET-PVA film using scanning electron microscopy (SEM). Heparin was immobilized on the PVA layered PET using two different methods, physical entrapment and covalent bonding, to further improve the biocompatibility of the film. Attenuated total reflectance (ATR) FT-IR spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to characterize the chemical composition of the surface modified films. The biocompatibility of the various surface modified PET films was evaluated using plasma recalcification time (PRT) and platelet adhesion. 相似文献
11.
Shubhangi G. Gholap 《Polymer》2004,45(17):5863-5873
Hydrophobically modified poly(vinyl alcohol), [PVA] was synthesized by graft copolymerization of N-tertiary butyl acrylamide [NTBA] onto PVA by free radical polymerization. The incorporation of NTBA onto PVA chains was confirmed by elemental analysis, FT-IR and NMR spectroscopy. A series of graft copolymers with different contents of NTBA were prepared and membranes were casted from these copolymer solutions in dimethyl sulfoxide. The increase in hydrophobicity with an increase in NTBA content was investigated by contact angle measurements. The swelling behaviour of membranes as a function of temperature, hydrophobic content, annealing temperature and period was studied. Permeability of solutes through these membranes was investigated as a function of solute size, membrane hydrophobicity and temperature. The swelling behaviour of the copolymer membranes showed that the lower content of NTBA gives discontinuous volume transition with respect to temperature whereas, the presence of higher amounts of NTBA showed decreased swelling ratios with very little influence of temperature on the swelling. The permeabilities of solutes through these membranes were strongly dependent on the size of the solute, solution temperature and hydrophobicity of the membrane. The copolymer membranes were further characterized using DSC, DMA and XRD. The peak becomes broader as the NTBA content increases. 相似文献
12.
Marilyn L. Minus 《Polymer》2006,47(11):3705-3710
Shearing of poly(vinyl alcohol) (PVA)/single wall carbon nanotube (SWNT) dispersions result in the formation of self-assembled oriented PVA/SWNT fibers or ribbons, while PVA solution results in the formation of unoriented fibers. Diameter/width and length of these self-assembled fibers was 5-45 μm and 0.5-3 mm, respectively. High-resolution transmission electron micrographs showed well resolved PVA (200) lattice with molecules oriented parallel to the nanotube axis. Nanotube orientation in the self-assembled fibers was also determined from Raman spectroscopy. PVA fibers exhibited about 48% crystallinity, while crystallinity in PVA/SWNT fibers was 84% as determined by wide angle X-ray diffraction. PVA and carbon nanotubes were at an angle of 25-40° to the self-assembled fiber axis. In comparison to PVA, PVA/SWNT samples exhibited significantly enhanced electron beam radiation resistance. This study shows that single wall carbon nanotubes not only nucleate polymer crystallization, but also act as a template for polymer orientation. 相似文献
13.
The influence of poly(vinyl alcohol) suspending agents on suspension poly(vinyl chloride) morphology
Stephen Ormondroyd 《Polymer International》1988,20(4):353-359
The requirements for PVC suspension resin have changed considerably in the last few years, so much so that few companies have products on their ranges that are more than 4 or 5 years old. The suspending agent has a crucial influence on the morphology of the resin, so the changes in resin characteristics have largely been achieved by changes in the suspending agent systems. After a brief review of the mechanism of PVC suspension polymerisation, the properties of polymers made using PVOH suspending agents are related to changes in the latter. The effect of variations in PVAc degree of hydrolysis and viscosity are related to changes in surface tension. Methods of achieving higher porosity by using low hydrolysis co-suspending agents are described. It is shown that higher bulk densities can be achieved by delayed addition of the PVOH. Levels of conjugated unsaturation and copolymer distributions are also shown to have important influences. 相似文献
14.
Biodegradability of N-acetyl-d-glucosamine (GlcNAc)-substituted poly(vinyl alcohol) (PVA) (1) in a soil suspension (pH 6.5) was investigated at 25°C for 40 days. Biochemical oxygen demand (BOD) of 1 with degree of substitution of 0.2-0.3 (DP=430-480) was higher than that of PVA under the degradation condition. Size exclusion chromatography (SEC), 1H NMR, and FT-IR measurements of the recovered sample indicated that biodegradation of PVA main chain was accelerated by partial glycosidation of hydroxyl groups in PVA. 相似文献
15.
Pure shear deformation reveals the significant differences in elastic properties of the poly(vinyl alcohol) (PVA) gels with almost identical initial modulus, but with different types of crosslinks, physical crosslinks formed by microcrystallites and chemical crosslinks made of covalent bonds. The ratio of the two principal stresses steeply increases with elongation in the physical gels, while that remains almost constant independently of stretching in the chemical gels. The marked growth of the stress ratio with elongation in the physical gels leads to the negative values of the derivative of the elastic free energy (W2) with respect to the second invariant of the deformation tensor in the whole range of deformation, which is firstly observed for elastomeric materials. By contrast, the chemical gels exhibit the positive values of W2 like most chemically crosslinked rubbers. Among the existing theories of rubber elasticity, the classical non-Gaussian three-chain model considering the effect of finite chain-length is qualitatively successful in accounting for the steep increase of the stress ratio and the negative values of W2 in the physical gels, although it fails to reproduce the large difference in the stress-strain behavior among uniaxial, pure shear and equi-biaxial deformations. These features of the physical gels are expected to stem from the structural characteristics such as fewer amounts of slippery-trapped entanglement along network strands compared to the chemical PVA gels. 相似文献
16.
We have studied the effect of BaCl2 dopant on the optical and microstructural properties of a polymer poly(vinyl alcohol) (PVA). Pure and BaCl2 doped PVA films were prepared using solvent casting method. These films were characterized using FTIR, UV-visible, XRD and DSC techniques. The observed peaks around 3425 cm−1, at 1733 cm−1 and 1640 cm−1 in the FTIR spectra were assigned to O-H, CC stretching and acetyle CO group vibrations, respectively. In the doped PVA shift in these bands can be understood on the basis of intra/inter molecular hydrogen bonding with the adjacent OH group of PVA. The UV-visible spectra shows the absorption bands around 196 nm and shoulders around 208 nm with different absorption intensities for doped PVA, which are assigned to n→π* transition. This indicates the presence of unsaturated bonds mainly in the tail-head of the polymer. Optical band energy gap is estimated using UV-visible spectra and it decreases with increasing dopant concentration. The powder XRD shows an increase in crystallinity in the doped PVA, which arises due to the interaction of dopant with PVA causing a molecular rearrangement within the amorphous phase of polymer. These modifications also influence the optical property of the doped polymer. The DSC study also supports increasing crystalline thickness and degree of crystallinity due to doping. 相似文献
17.
18.
Ketalization reaction of poly(vinyl alcohol) (PVA) by acetone under acidic-catalyst/phase-transfer-catalyst was carried out easily and the structure of the product both swelled and dissolved in dimethyl sulfoxide-d6 (DMSO-d6) was confirmed, which then indicated the structural change in the product polyvinylketal (PVKT) due to its hydrolysis in water, by NMR measurements. The effect of catalysts on reaction was probed from experimental viewpoint, compared with the theoretical calculation applicable to the previous classical method. It was observed that high ketalization degree PVKT was obtained with the presence of water and the effect of water on reaction was also probed in the present method, which may result in further application in the total syntheses of complex macromolecules from polyols and ketones. The behavior of PVKT in water under different conditions, which is very similar to that described in previous report, was also studied, as well as the specific viscosity (ηsp) of PVKT solution, and proper explanation is proposed. And the present study may lead to a further investigate of attractive intrinsic properties of PVKT. 相似文献
19.
We studied the rates of gelation and phase separation of poly(vinyl alcohol) (PVA) solutions in mixtures of dimethyl sulfoxide (DMSO) and water at 25 °C and found that both the rates show a maximum at a volume fraction of DMSO φDMSO=0.60 while gelation was not observed either in pure DMSO or pure water, suggesting that water-DMSO is a cononsolvent system for PVA. On the basis of the data by Cowie [Can J Chem 36 (1961) 2240] we concluded that the 1:2 stable complex between one DMSO molecule and two water molecules is the main cause of this cononsolvency. 相似文献