共查询到16条相似文献,搜索用时 180 毫秒
1.
2.
运动目标检测是计算机视觉中目标跟踪和目标分类的基础,其已经应用于水下机器人执行水下任务和海洋生态研究.水下环境中复杂的场景和不良的照明条件往往使对运动目标的检测变得困难.为了解决上述问题,我们提出了一种将背景差分和三帧差分相结合的方法.在这种方法中,首先,我们分别通过背景差分和三帧差分检测运动物体像素.接下来,我们对背景差分和三帧差分的结果进行"与"运算,背景差分提供了对象的信息,以补充三帧差分检测到的不完整的信息.最后,利用形态学处理来消除背景中由非静态物体引起的噪声.实验结果表明,该方法对从水下视频中运动物体检测,具有可靠并有效的效果. 相似文献
3.
4.
5.
6.
Camshift算法需要手动标定目标区域,且具有无法适应目标的高速运动、相似颜色背景和遮挡等情况的局限性。针对这些情况提出结合帧间差分法和背景差分相结合的方法对Camshift算法进行改进。首先利于帧间差分和背景差分相结合检测出运动目标区域。然后用该区域初始化跟踪目标窗口。当有相似颜色背景干扰或遮挡情况发生时,利用检测出的运动目标区域对搜索窗口进行限制。同时,使用Kalman滤波对下一帧的搜索窗口进行预测,从而使该算法适合高速运动目标的跟踪。实验表明该算法能够准确对目标窗口进行初始化,且在目标高速运动、遮挡、和相似颜色背景干扰情况下,仍能进行适时实时有效跟踪。 相似文献
7.
基于背景差分和三帧差分的运动目标检测 总被引:1,自引:0,他引:1
柴池 《网络安全技术与应用》2014,(11):75-76
为了提高运动目标检测算法的准确性和对背景变化的适应性,本文采用了三帧差分与基于单高斯模型背景差分法相结合的算法,并通过最大类间方差法提取自适应阈值。引入一个新的背景更新机制,当运动物体融入背景或者背景中物体移除时,将背景更新为当前视频帧。实验结果表明,本文算法在对运动目标进行检测时,不易受背景光线变化及运动物体融入背景等因素的影响,适用于无人监控环境。 相似文献
8.
9.
10.
提出一种融合使用背景帧差和分块帧差的运动目标检测方法。该方法通过对图像的每个像素点进行学习,然后建立初始背景,通过不完全覆盖分块法对图像进行分块,对各子块进行帧间差分实现对前景图像的粗提取,采用otsu算法获取阈值,运用背景差分对前景图像进行细提取。背景采用分段学习的更新方法,能够消除光照变化、背景物体摇动等噪声。实验结果表明,该方法快速、准确,抗干扰能力强,能较好地满足实时检测运动目标的要求。 相似文献
11.
基于自适应背景模型运动目标检测 总被引:2,自引:0,他引:2
随着城市化速度的加快,机动车日益普及,人们在享受机动车所带来的巨大便利的同时,也面临着交通拥挤的困扰。随着计算机硬件技术和计算机视觉技术的发展,基于计算机视觉的交通监控系统成为可能。从一个交通视频序列中识别出运动物体是许多交通监控系统应用系统的重要任务,针对该问题,提出了一种建立在对视频序列中的整个背景情景的统计描述基础上的运动目标的检测的有效方法,该方法能够适应变化的背景,具有较强的鲁棒性和较好的实时性。 相似文献
12.
基于时空背景差的运动目标检测算法 总被引:5,自引:0,他引:5
假定图像序列的背景图像已经获得,提出一种基于时空背景差的运动目标检测算法.该算法融合背景差分、基于时间信息的帧间差分及基于空间信息的背景差分信息,得到真实运动物体的运动种子点,认为背景差分图像中包含运动种子点的连通区域为真实的前景目标,从而可以检测出正确而完整的前景目标.仿真实验表明,该算法可以避免背景模型对场景的表征不足及背景更新阶段造成的错误检测,即使在场景中存在微小运动的复杂环境下,仍能实现准确的运动分割. 相似文献
13.
针对传统的帧差法检测运动目标时易出现空洞及Meanshift算法在复杂环境下易丢失跟踪目标甚至导致跟踪失败的缺点,提出了采用动态阈值五帧差分与跟踪目标实时模板更新的改进Meanshift的运动目标检测与跟踪算法,以提高系统的实时性和鲁棒性。结果表明该方法是可行的,能准确检测出运动目标,以提高目标跟踪的可靠性。 相似文献
14.
15.
16.
针对动态背景下运动目标检测的问题,最大限度地降低背景对运动目标检测的影响,提出了一种基于相位相关法和傅里叶梅林变换的动态背景下运动目标检测算法.动态背景下运动目标检测的主要部分是背景运动补偿,首先利用相位相关法和傅里叶梅林变换估计全局运动参量,然后根据全局运动参量利用双线性内插法进行背景匹配,最后对配准后的图像利用帧间差分法提取运动目标.实验表明,该算法具有一定的鲁棒性,能有效地检测动态背景下的运动目标. 相似文献