首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New monomers, 4,4′-bis(4-phenoxybenzoyl)diphenyl (BPOBDP) and N,N′-bis(4-phenoxybenzoyl)-p-phenylenediamine (BPBPPD), were conveniently synthesized via simple synthetic procedures from readily available materials. A series of novel poly(aryl ether ketone)s containing both diphenyl moiety and amide linkages in the main chains were prepared by electrophilic Friedel-Crafts solution copolycondensation of isophthaloyl chloride (IPC) with a mixture of BPOBDP and BPBPPD, over a wide range of BPOBDP/BPBPPD molar ratios, in the presence of anhydrous AlCl3 and N-methylpyrrolidone (NMP) in 1,2-dichloroethane (DCE). All the polymers are semicrystalline and had remarkably increased Tgs over commercially available PEEK and PEKK due to the incorporation of the diphenyl moiety and amide linkages in the main chains. The polymers with 40-60 mol% BPBPPD had not only high Tgs of 183-189 °C, but also moderate Tms of 314-328 °C, which are very suitable for the melt processing. These polymers had tensile strengths of 107.4-111.5 MPa, Young's moduli of 2.20-2.45 GPa, and elongations at break of 11.3-13.5% and exhibited high thermal stability and good resistance to organic solvents.  相似文献   

2.
Guipeng Yu  Cheng Liu  Encheng Lin 《Polymer》2009,50(7):1700-385
Soluble and curable aromatic polyamides have great potential use as processable and heat-resistant polymeric materials. In this study, a novel series of soluble aromatic polyamides (CN-PPAs) containing phthalazinone moiety and crosslinkable terminal cyano groups were synthesized by polycondensation of 1,2-dihydro-2-(4-carboxyphenyl)-4-[4-(4-carboxyphenoxyl)phenyl]-phthalazinone (DHPZ-DC) with calculated 4,4′-oxydianiline (ODA), followed by end-capping with 4-cyanobenzoic acid (CBA). Thermal crosslinking of CN-PPAs, catalyzed by zinc chloride, was then performed in the presence of terephthalonitrile (TPH) via heating either their films or powders up to 300-340 °C. The uncured synthesized polymers have good solubility while the cured samples become insoluble in common organic solvents. Spectra and elemental analysis measurements demonstrate cyclization reaction of terminal cyano groups to form s-triazine rings. The presence of TPH and ZnCl2 is effective in promoting thermal crosslinking and s-triazine forming reaction of the CN-PPAs under normal pressure. The resulting cured samples exhibit no Tg up to 400 °C by DSC and have excellent thermal stability. This kind of cyano-terminated poly(phthalazinone ether amide) may be a good candidate as matrix for high performance polymeric materials.  相似文献   

3.
A novel series of phthalazinone-based poly(arylene ether nitrile)s bearing terminal cyano groups via N-C linkages (PPEN-DCs) were synthesized by a simple solution polycondensation of 4-(4-hydroxylphenyl)(2H)-phthalazin-1-one (HPPZ) with calculated 2,6-difluorobenzonitrile (DFBN), followed by the termination of 4-chlorobenzonitrile (CBN). The Mns of oligomeric PPEN-DCs, which are in the range of 1600-6200, can be well-controlled by adjusting reactant ratio. The incorporation of phthalazinone into the polymer chain results in an improvement in the solubility and glass transition temperatures (Tgs). The amorphous PPEN-DCs were thermally crosslinked to afford insoluble products in the presence of terephthalonitrile and zinc chloride. The pendant cyano groups in the polymer chain hardly undergo any crosslinking or cyclization, while the terminal cyano groups with nitrogen-bridged phthalazinone in the para-substitution are much more reactive in s-triazine forming reaction and effectively promote certain crosslinking under normal pressure. Tgs of the oligomers, which range from 245 to 269 °C, could be further increased at least by 94 °C upon thermal curing. The crosslinked samples exhibit excellent thermal stability and absorb less than 2.7 wt% water after exposure to an aqueous environment for extended periods. This kind of cyano-terminated poly(arylene ether nitrile)s may be a good candidate as matrix resins for high-performance polymeric materials.  相似文献   

4.
Der-Jang Liaw  Wen-Hsiang Chen 《Polymer》2003,44(14):3865-3870
A series of new soluble poly(amide-imide)s were prepared from the diimide-dicarboxylic acid, 2,2-bis[4-(4-trimellitimidophenoxy)phenyl]norbornane, and various diamines by the direct polycondensation in N-methyl-2-pyrrolidinone containing CaCl2, using triphenyl phosphite and pyridine as condensing agents. All the polymers were obtained in quantitative yields with inherent viscosities of 1.01-1.42 dL g−1. Gel permeation chromatography (GPC) of the polymers showed number-average and weight-average molecular weight up to 67,300 and 118,000, respectively. The poly(amide-imide)s were amorphous and were readily soluble in various solvents such as N-methyl-2-pyrrolidinone (NMP), N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), dimethylsulfoxide (DMSO), pyridine, cyclohexanone and tetrahydrofuran. Tough and flexible films were obtained by casting their DMAc solution. The films had tensile strength of 89-110 MPa and a tensile modulus range of 1.8-2.2 GPa. The glass transition temperatures of the polymers were determined by DSC method and they were in the range of 265-295 °C. The polymers were fairly stable up to a temperature around or above 450 °C, and lose 10% weight in the range of 472-504 °C and 490-520 °C in nitrogen and air, respectively.  相似文献   

5.
Chloromethylated poly(phthalazinone ether sulfone ketone) (CMPPESK) as a novel membrane material was successfully prepared from poly(phthalazinone ether sulfone ketone), with concentrated sulfuric acid as the solvent and catalyst, and chloromethyl octyl ether with lower toxicity as the chloromethylated regent. The effects of the reaction conditions on the preparation of CMPPESKs with different degrees of chloromethylation were examined. The quantity of chloromethyl groups per repeated unit (DCM) of CMPPESK was determined by the method of analysis of the chlorine element, and structures were characterized by 1H‐NMR spectroscopy. The introduction of chloromethyl groups into the polymer chains led to a decrease in the decomposition temperature. With increasing DCM, the initial degradation temperature declined. CMPPESK had good solubility and was soluble in N‐methyl‐2‐pyrrolidone (NMP), N,N‐dimethylacetamide (DMAc), and chloroform. However, quaternized poly(phthalazinone ether sulfone ketone) (QAPPESK) had excellent solvent resistance, was only partly soluble in sulfuric acid (98%), and was swollen in N,N‐dimethylformamide. QAPPESK nanofiltration (NF) membranes had about 90% rejection for MgCl2, and the performance of the NF membrane prepared with DMAc as the solvent was superior to that of the NF membrane prepared with NMP as the solvent. In addition, the rejection to the different salt solutions followed the following sequence: MgCl2 > MgSO4 > NaCl > Na2SO4. Furthermore, the thermotolerance of the QAPPESK NF membrane was examined, and the results show that when the solution temperature rose from 11 to 90°C, the water flux increased more than threefold with stable salt rejection. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
Xing Hong Zhang  Yu Qin Min 《Polymer》2006,47(6):1785-1795
A novel bisphenol(1,2-dihydro-2-(4-((4-hydroxy)phenyliminomethylidene)phenyl)-4-(4-((4-(4-hydroxy)phenyliminomethylidene)phenoxy)phenyl)(2H)phthalazin-1-one, DPP) and a diamine(1,2-dihydro-2-(4-aminophenyl)-4-(4-(4-aminophenoxy)phenyl)(2H)phthalazin-1-one, DAP) were synthesized and characterized. The novel epoxy polymers containing phthalazinone and/or azomethine moieties were prepared by binary polymerization of DAP (or DPP) with diglycidyl ether of biphenyl A (DGEBA) and ternary polymerization of hybrid curing agents, DAP/DPP (DAP and DPP under different molar ratios) with DGEBA. The cure behaviors of these new epoxy systems were studied by dynamic differential scanning calorimeter (DSC) and Infrared (IR) scans. Especially, the activation energy of DAP/DGEBA calculated by Kissinger and Ozawa methods were 73.8 and 77.4 kJ/mol, respectively. For ternary epoxy system, it was found that hybrid curing agents of DAP/DPP exhibited significant associated effect on their reactivity towards the oxirane group. Glass transition temperatures (Tg's) of these new epoxy polymers were all above 150 °C from the results of DSC, and the initial thermal decomposition temperatures (Td,5%'s) and integral procedure decomposition temperatures (IPDT's) of these new epoxy polymers are above 350 and 850 °C, respectively from results of thermogravimetric analyses (TGA). These results show that new epoxy polymers containing phthalazinone and/or azomethine moieties exhibited excellent thermal properties. Especially, thermal properties of the ternary epoxy polymers could be modified by changing the content of DAP and DPP. The linear relationships between char yield (Yc,wt%) and the structural compositions of these new polymers (weight percentage of phthalazinone, azomethine and nitrogen, C/H weight ratio) were built.  相似文献   

7.
Novel diamine monomers, 1,3-bis[3′-trifluoromethyl-4′(4″-amino benzoxy) benzyl] benzene (IV) and 4,4-bis[3′-trifluoromethyl-4′(4-amino benzoxy) benzyl] biphenyl (V) have been synthesized. These monomers lead to several novel fluorinated polyimides on reaction with different commercially available dianhydrides like pyromellatic dianhydride (PMDA), benzophenone tetracarboxylic acid dianhydride (BTDA) or 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane (6FDA). The polyimides prepared from above two monomers on reaction with 6FDA are soluble in several organic solvents such as N,N-dimethyl formamide (DMF), N,N-dimethyl acetamide (DMAc) and tetrahydrofuran (THF). The polyimides prepared from PMDA/IV is soluble in DMF and N-methyl pyrollidone (NMP) on heating, whereas V/PMDA is insoluble in all solvents. BTDA/IV polyimide is also soluble in NMP, DMF and DMAc. These polyimide films have low water absorption rate 0.2-0.7% and low dielectric constant 2.74-3.2 at 1 MHz. These polyimides showed very high thermal stability even up to 531 °C for 5% weight loss in synthetic air and glass transition temperature up to 316 °C (by DSC) in nitrogen. All polyimides formed tough transparent films, with tensile strength up to 148 MPa, a modulus of elasticity up to 2.6 GPa and elongation at break up to 31% depending upon the exact repeating unit structure.  相似文献   

8.
Cross-linkable poly(phthalazinone ether ketone sulfone) bearing tetrafluorostyrene groups (PPEKS-FSt) has been prepared by copolycondensation reaction for optical waveguide applications. The resulting amorphous polymer exhibits good solubility in some common polar organic solvents (e.g., N,N′-dimethylacetamide, N-methyl-2-pyrrolidinone, chloroform) at room temperature, and can be easily spin-coated into thin films with good optical quality. The glass transition temperature (Tg) and the temperature of 1% weight loss (1% Td) are 261 °C and 494 °C, respectively, which could be further increased by 31 °C and 14 °C upon thermal cross-linking. The cross-linked polymer thin films exhibit high refractive index (∼1.65, TE mode), high thermo-optic coefficient value (dn/dT) (−1.455 × 10−4/°C, TE mode), low optical loss (less than 0.24 dB/cm at 1310 nm) and relatively low birefringence (∼0.007).  相似文献   

9.
A series of novel fluorinated poly(aryl ether)s containing phthalazinone moieties (FPPEs) have been prepared by a modified synthetic procedure for optical waveguide applications. The obtained random copolymers exhibited excellent solubility in polar organic solvents, high glass transition temperatures (Tgs: 185-269 °C), good thermal stabilities (the temperatures of 1% weight loss: 487-510 °C) and good optical properties. By adjusting the feed ratio of the reactants, the refractive indices of TE and TM modes (at 1550 nm) could be well controlled in the range of 1.575-1.498 and 1.552-1.484, respectively. The optical losses of the FPPEs exhibited relatively low values (less than 0.27 dB/cm at 1310 nm). Additionally, the thermo-optic coefficient (dn/dT) values of the FPPEs at 1310 nm and 1550 nm (TE mode) ranged from −0.97 × 10−4 °C to −1.33 × 10−4 °C and from −0.96 × 10−4 °C to −1.29 × 10−4 °C, respectively.  相似文献   

10.
Bing Zhang  Shouhai Zhang  Xigao Jian 《Carbon》2006,44(13):2764-2769
Carbon membranes were prepared from a novel polymeric precursor of poly(phthalazinone ether sulfone ketone) (PPESK), of which the changes of microstructure and chemical compositions during pyrolysis from 500 °C to 950 °C were monitored by thermal gravimetric analysis, X-ray diffraction, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. It has been found that the weight loss of the PPESK precursor up to 800 °C is about 43.0 wt%. After the heat treatment, the typical chemical structure of the PPESK precursor disappears, at the same time a graphite-like structure with more aromatic rings is formed. The interlayer spacing (i.e., d value) decreases from 0.471 nm to 0.365 nm as the pyrolysis temperature increases. The gas permeation performance of carbon membranes has been tested using pure single gases including H2, CO2, O2 and N2. For the carbon membrane obtained by carbonizing the PPESK precursor at 800 °C, the maximum ideal permselectivities for H2/N2, CO2/N2 and O2/N2 gas pairs could reach 278.5, 213.8 and 27.5, respectively.  相似文献   

11.
Novel optically transparent, low dielectric and highly organosoluble alicyclic polyamides derived from bulky alicyclic diamine containing trifluoromethyl group on either side, 1,1-bis[4-(2-trifluoromethyl-4-aminophenoxy)phenyl]-4-tert-butylcyclohexane (BTFAPBC), were prepared. The polyamides were obtained in almost quantitative yields and showed inherent viscosity values between 0.55 and 0.72 dL g−1 in DMAc solution. Most of the polyamides showed excellent solubility in polar solvents such as N-methyl-2-pyrrolidinone (NMP), N,N′-dimethyl acetamide (DMAc), N,N′-dimethyl formamide (DMF), pyridine, cyclohexanone, γ-butyrolactone and chloroform. The cut-off wavelength for polyamides ranged from 350 to 388 nm. Polyamides with alicyclic tert-butylcyclohexyl cardo and trifluoromethyl substituents exhibited low dielectric constants ranging from 3.29 to 3.98 (at 100 Hz) compared with commercially available polyamides [Amodel®, 4.2-5.7 at 100 Hz]. Polyamides showed glass transition temperatures in the range of 244-266 °C and possessed a coefficient of thermal expansion (CTE) of 60-75 ppm °C−1. Thermogravimetric analysis data showed that the polyamides were stable up to 430 °C and the 10% weight loss temperature was found to be in the range of 437-466 °C in nitrogen atmosphere. The polyamide films had a tensile strength in the range of 66-103 MPa, elongation at break in the range of 5-8%, and tensile modulus in the range of 1.5-2.2 GPa. Due to their properties, the polyamides could be considered as engineering plastic and photoelectric materials.  相似文献   

12.
A new diamine monomer containing noncoplanar methyl substitution, 2,2′-dimethyl-4,4′-bis(2-trifluoromethyl-4-aminophenoxy)biphenyl (DBTFAPB) was successfully synthesized and used in the preparation of a series of polyamides and polyimides by direct polycondensation with various aromatic dicarboxylic acids and tertacarboxylic dianhydrides. A new noncoplanar dicarboxylic acid monomer containing noncoplanar methyl substitution, 2,2′-dimethyl-4,4′-bis(2-trifluoromethyl-4-trimellitimidophenoxy)biphenyl (DBTFTPB) was also successfully synthesized by refluxing the diamine, DBTFAPB, with trimellitic anhydride in glacial acetic acid. A series of new poly(amide-imide)s were prepared directly from DBTFTPB with various diamines in N-methyl-2-pyrrolidinone (NMP). All the polymers exhibited excellent solubility in solvents, such as N-methyl-2-pyrrolidinone (NMP), N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), pyridine, tetrahydrofuran (THF), cyclohexanone and γ-butyrolactone at room temperature or upon heating at 70 °C. Inherent viscosities of the polymers were found to range between 0.60 and 1.34 dL g−1. Gel permeation chromatography (GPC) of the polymers showed number-average and weight-average molecular weight up to 7.3×104 and 17.9×104, respectively. These polymers showed that the glass transition temperatures were between 230 and 265 °C, and the 10% mass loss temperatures were higher than 460 °C in nitrogen atmosphere. All the polymers could be cast into flexible and tough films from DMAc solutions. They had a tensile strength in the range of 82-124 MPa and a tensile modulus in the range of 1.9-2.9 GPa. These polymers exhibited low dielectric constants ranging from 2.87 to 4.03, low moisture absorption in the range of 0.29-3.20%, and high transparency with an ultraviolet-visible absorption cut-off wavelength in the 347-414 nm range.  相似文献   

13.
The cellulose/lithium chloride/dimethylacetamide (DMAc) and cellulose/lithium chloride/N-methyl-2-pyrroilidinone (NMP) solutions were investigated by 13C NMR spectroscopy. Well-resolved spectra were obtained for both solutions and indicated that cellulose was present in these systems in the form of underivatized cellulose. The change in 13C chemical shifts of DMAc and NMP in the presence of LiCl and LiBr was compared with that of several salt/aprotic solvents, and the results point to the existence of a cellulose–LiCl–DMAc (or NMP) complex in which the lithium cation is strongly bound to the amide carbonyl oxygen and the chloride anion involved in the dissociation of the cellulose hydrogen bonds. Spin–lattice relaxation times (T1 of the 13C carbons of the solvent molecules, DMAc and NMP, show a large decrease in T1 for all solvent carbons upon addition of LiCl. Further decrease in T1 is observed when cellulose is introduced to the LiCl/NMP but not to the LiCl/DMAc systems. These observations are attributed to slower molecular motions of DMAc and NMP in the presence of LiCl, and, in the case of NMP, in the presence of cellulose.  相似文献   

14.
B.R. Liaw  P.T. Huang  Y.K. Han 《Polymer》2007,48(24):7087-7097
Three novel 2-trifluoromethyl-activated bisfluoro monomers have been synthesized successfully using a Suzuki-coupling reaction of 4-fluoro-3-trifluoromethyl phenyl boronic acid with 4,4′-dibromo-p-terphenyls with varied phenyl substitution on the middle phenylene ring. Three monomers were converted to a series of phenyl substituted poly(arylene ether)s by nucleophilic displacement of the fluorine atoms on the terminal benzene ring with several bisphenols. The polymers obtained by displacement of the fluorine atoms exhibit weight-average molecular weight up to 2.25 × 105 g/mol in GPC. Thermal analysis studies indicated that these polymers did not show melting endotherms but did show ultrahigh Tg values up to 334 °C in DSC and outstanding thermal stability up to 671 °C for 5% weight loss in TGA under nitrogen atmosphere. The polymers are soluble in a wide range of organic solvents: THF, CHCl3, NMP, DMAc, DMF, toluene, etc., and are insoluble in DMSO and acetone at room temperature. Transparent and flexible films were easily prepared by solution casting from chloroform solution of each of the polymers. The UV absorption spectra of thin films showed no absorption in the visible light region of the spectrum, suggesting a good application to optical transparent materials in the visible light region of the spectrum.  相似文献   

15.
Chin-Ping Yang 《Polymer》2006,47(20):7021-7033
Two series of novel polyimides (5a-g and 6a-g) containing flexible ether linkages and pendent trifluoromethyl (CF3) groups were synthesized from 1,4-bis(3,4-dicarboxyphenoxy)benzene dianhydride (3a) and 1,3-bis(3,4-dicarboxyphenoxy)benzene dianhydride (3b) with various CF3-substituted aromatic bis(ether amine)s (4a-g) via ring-opening polyaddition to poly(amic acid)s, followed by thermal or chemical imidization. These polyimides were readily soluble in a variety of organic solvents and could be solution-cast into flexible and tough films. The cast films exhibited high optical transparency and almost no color, with a UV-vis absorption edge of 368-382 nm and a very low b value (a yellowness index) of 6.2-15.5. They had good thermal stability with glass-transition temperatures of 186-288 °C, and most of them did not show significant decomposition before 500 °C. Moreover, these polyimide films also possessed low dielectric constants of 2.79-3.49 (at 1 MHz) and low water uptakes (<0.65 wt%).  相似文献   

16.
Daxue Yin  Haixia Yang  Lin Fan 《Polymer》2005,46(9):3119-3127
A novel fluorinated aromatic diamine monomer, 1,1-bis[4-(4′-aminophenoxy)phenyl]-1-[3″,5″-bis(trifluoromethyl)phenyl]-2,2,2-trifluoroethane(9FTPBA), was synthesized by coupling 3′,5′-bis(trifluoromethyl)-2,2,2-trifluoroacetophenone with 4-nitrophenyl phenyl ether under the catalysis of trifluoromethanesulfonic acid, followed reduced by reductive iron and hydrochloric acid. A series of new fluorine-containing polyimides having inherent viscosities of 0.96-1.23 dl/g was synthesized from the novel diamine with various commercially available aromatic dianhydrides using a standard two-stage process with thermal imidization and chemical imidization of poly(amic acid) films. All the fluorinated polyimides were soluble in many polar organic solvents such as NMP, DMAc, DMF, and m-cresol, as well as some of low boiling point organic solvents such as chloroform and acetone. The polymer films have good thermal stability with the glass transition temperature of 223-225 °C, the temperature at 5% weight loss of 535-568 °C in nitrogen, and have outstanding mechanical properties with the tensile strengths of 68-89 MPa, initial moduli of 2.14-2.19 GPa, and elongations at breakage of 3.2-10.5%.  相似文献   

17.
High-pressure phase behaviors are measured for the CO2 + neopentyl methacrylate (NPMA) system at 40, 60, 80, 100, and 120 °C and pressure up to 160 bar. This system exhibits type-I phase behavior with a continuous mixture-critical curve. The experimental results for the CO2 + NPMA system are modeled using the Peng-Robinson equation of state. Experimental cloud-point data up to the temperature of 180 °C and the pressure of 2000 bar are presented for ternary mixtures of poly(neopentyl methacrylate) [poly(NPMA)] + supercritical solvents + NPMA systems. Cloud-point pressures of poly(NPMA) + CO2 + NPMA system are measured in the temperature range of 60-180 °C and to pressures as high as 2000 bar with NPMA concentration of 0.0, 5.2, 19.0, 28.1 and 40.2 wt%. It appears that adding 51.2 wt% NPMA to the poly(NPMA) + CO2 mixture does significantly change the phase behavior. Cloud-point curves are obtained for the binary mixtures of poly(NPMA) in supercritical propane, propylene, butane, 1-butene, and dimethyl ether (DME). The impact of dimethyl ether concentration on the phase behavior of the poly(NPMA) + CO2 + x wt% DME system is also measured at temperature of 180 °C and pressure range of 36-2000 bar. This system changes the pressure-temperature (P-T) slope of the phase behavior curves from upper critical solution temperature (UCST) region to lower critical solution temperature (LCST) region as the NPMA concentration increases.  相似文献   

18.
It is necessary to introduce cross-linkable groups onto polymer chains as the processability and thermal stability of the polymers for passive waveguide device applications are very dependent on their cross-linking capabilities. Herein a series of novel cross-linkable allyl-containing fluorinated poly(phthalazinone ether)s (Allyl-FPPEs) have been prepared by a modified polycondensation of 4-(4-hydroxylphenyl)(2H)-phthalazin-1-one (DHPZ), decafluorobiphenyl (DFBP), 4,4′-(hexafluoroisopropylidene)diphenol (6F-BPA), and 3,3′-diallyl-4,4′-dihydroxybiphenyl (DA-DHBP) for optical waveguide applications. The obtained random polymers were characterized by FT-IR, NMR and GPC. The resulting polymers having good solubility in polar organic solvents at room temperature, can be easily spin-coated into thin films with attracting optical quality, good thermal stabilities (the temperatures of 1% mass-loss after curing: 455-503 °C), and high glass transition temperatures (Tgs: 167-251 °C) which could further increase by about 20 °C after thermal cross-linking. The crosslinked polymer films exhibit good optical properties. By adjusting the feed ratio of the reactants, the refractive indices of TE and TM modes (at 1550 nm) could be well controlled in the range of 1.4998-1.5618 and 1.4954-1.5520, respectively. The optical losses of the crosslinked polymers possess rather low values, less than 0.3 dB/cm at 1550 nm.  相似文献   

19.
Positively charged quaternized poly(phthalazinone ether sulfone ketone) (QAPPESK) nanofiltration (NF) membranes were prepared from chloromethylated poly(phthalazinone ether sulfone ketone) by the dye/wet phase inversion method with N‐methyl‐2‐pyrrolidone (NMP) and N,N‐dimethylacetamide (DMAc) as solvents. The effects of the ratio of NMP to DMAc, the evaporation time, the evaporation temperature, and the coagulation temperature on membrane performance were evaluated by the orthogonal design method. The results showed that the optimal preparation conditions were an NMP/DMAc ratio of 2/8, an evaporation time of 5 min at 70°C, and a coagulation temperature lower than 5°C. The effects of the additive type and concentration on the QAPPESK NF membrane cross‐section morphology and performance were investigated in detail. Furthermore, QAPPESK NF membranes exhibited good thermal stability with stable membrane performance for 120 h at 60°C. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
The effects of incorporated poly(d-lactic acid) (PDLA) as poly(lactic acid) (PLA) stereocomplex crystallites on the isothermal and non-isothermal crystallization behavior of poly(l-lactic acid) (PLLA) from the melt were investigated for a wide PDLA contents from 0.1 to 10 wt%. In isothermal crystallization from the melt, the radius growth rate of PLLA spherulites (crystallization temperature (Tc)≥125 °C), the induction period for PLLA spherulite formation (ti) (Tc≥125 °C), the growth mechanism of PLLA crystallites (90 °C≤Tc≤150 °C), and the mechanical properties of the PLLA films were not affected by the incorporation of PDLA or the presence of stereocomplex crystallites as a nucleating agent. In contrast, the presence of stereocomplex crystallites significantly increased the number of PLLA spherulites per unit area or volume. In isothermal crystallization from the melt, at PDLA content of 10 wt%, the starting, half, and ending times for overall PLLA crystallization (tc(S), tc(1/2), and tc(E), respectively) were much shorter than those at PDLA content of 0 wt%, due to the increased number of PLLA spherulites. Reversely, at PDLA content of 0.1 wt%, the tc(S), tc(1/2), and tc(E) were longer than or similar to those at PDLA content of 0 wt%, probably due to the long ti and the decreased number of spherulites. This seems to have been caused by free PDLA chains, which did not form stereocomplex crystallites. On the other hand, at PDLA contents of 0.3-3 wt%, the tc(S), tc(1/2), and tc(E) were shorter than or similar to those at PDLA content of 0 wt% for the Tc range below 95 °C and above 125 °C, whereas this inclination was reversed for the Tc range of 100-120 °C. In the non-isothermal crystallization of as-cast or amorphous-made PLLA films during cooling from the melt, the addition of PDLA above 1 wt% was effective to accelerate overall PLLA crystallization. The X-ray diffractometry could trace the formation of stereocomplex crystallites in the melt-quenched PLLA films at PDLA contents above 1 wt%. This study revealed that the addition of small amounts of PDLA is effective to accelerate overall PLLA crystallization when the PDLA content and crystallization conditions are scrupulously selected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号