首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The as-grown structure of electrochemically synthesized titania nanotube arrays is investigated by scanning electron microscope (SEM) in combination with transmission electron microscope (TEM) as well as X-ray diffraction (XRD). The analysis reveals a preferred growth direction of the nanotubes relative to the substrate surface and the well control on the nanotube arrays morphology. The crystal structure of the anatase phase is detected and exists in the tube walls without any thermal treatment, which makes it possible to realize the application of as-formed TiO2 nanotubes avoiding the degradation of the nanotube structures when sintering. In addition, a new growth, layered model of the anodic TiO2 nanotubes is presented to obtain further understanding of the growth mechanism.  相似文献   

2.
采用阳极氧化法在含0.4 mol/L HF的乙二醇电解液中制备高度有序的一维TiO2纳米管阵列,并采用柠檬酸溶剂热还原法在TiO2纳米管阵列表面沉积Pt纳米颗粒,研究Pt纳米颗粒对TiO2纳米管阵列光电化学性能的影响,对纳米管的结构、形貌、成分进行了表征,采用电化学工作站对沉积前后的TiO2纳米管阵列进行循环伏安扫描,并用5 W紫外LED灯对不同沉积条件下样品的光电流进行测试. 结果表明,所制TiO2纳米管排列整齐,管径均匀,约为150 nm,壁厚约20 nm,管长约为20 mm;尺寸约20 nm 的Pt纳米颗粒在纳米管内部分布均匀,Pt以单质形式存在. Pt沉积可提高TiO2纳米管的电化学活性,并明显增加TiO2纳米管对紫外光的吸收能力和光电流响应,Pt纳米颗粒的沉积温度为100℃时具有最大光电流响应,最高瞬时光电流值为289.84 mA.  相似文献   

3.
High-energy ball milling initiates a solid-state reaction in an equimolar mixture of TiO2 and ZrO2. The first stage of ball milling induced the transformation of anatase TiO2 to high-pressure phase TiO2 (II), isostructural with ZrTiO4. The formation of solid solutions monoclinic ZrO2/TiO2 and TiO2 (II)/ZrO2 was observed in the intermediate stage. Afterward, a nanosized ZrTiO4 phase was formed in the milled product from the TiO2 (II)/ZrO2 solid solution. The sintering of the milled product at a temperature <1100°C was examined in situ by Raman spectroscopy. The full solid-state reaction toward ZrTiO4 ceramic is completed at a temperature considerably lower than reported in the literature.  相似文献   

4.
Nano and submicrometer scale titanium oxide (TiO2) powders were synthesized by solid and molten salt synthesis (SSS and MSS) from amorphous titanium hydroxide precipitate. Sodium chloride (NaCl) and dibasic sodium phosphate (Na2HPO4·2H2O, DSP) separately or as mixture with different weight ratios were used as the salts. At the eutectic salt composition (20% DSP/80% NaCl), the microstructure and phase composition of the TiO2 was changed from equiaxed nanoparticles of anatase with size ∼40–50 nm, to mixed microstructure of bundle and acicular particles of rutile with 0.05–0.2 μm diameter, 6–10 μm length, and aspect ratio 20–60 depending on treatment time and temperature. At high temperature (825°C) and long time (30 h), microstructural differences were significant for the powders treated with different salts. Particle morphologies ranged from equiaxed, to acicular, to bundles, to nanofibers with very high aspect ratio. At lower treatment temperature (725°C) for shorter time (3 h), the morphology of the products did not change with different salt compositions, but the crystallite sizes changed appreciably. Different starting titanium precursors influenced particle size at lower temperature and time. Titanium hydroxide heat treated without salt resulted in significant grain growth and fused secondary particles, as compared with more finely separated and lightly agglomerated powders resulting from SSS and MSS treatments.  相似文献   

5.
The objective of this study was to compare the conventional and microwave hydrothermal treatment of TiOCl2 solutions. Colloidal titania suspensions were prepared by forced hydrolysis at 195°C for different times ranging from 1 to 32 h for the conventional synthesis and from 5 min to 1 h for the microwave ones. The effect of the microwave technology on both the synthesis conditions and titania nanoparticles properties has been evaluated. Particles morphology and crystallinity were studied by using transmission electron microscopy and X-ray diffraction. The thermal and chemical stability of the obtained powders were determined by TG/DTA analysis.  相似文献   

6.
The solubility of TiO2 in tetragonal ZrO2 is 13.8±0.3 mol% ui 1300°C, 14.9±0.2 mol% at 1400°C, and 16.1±0.2 mol% at 1500°C. These solid solutions transform to metastable monoclinic solid solutions without compositional change on cooling to room temperature.  相似文献   

7.
The formation of TiO2 powders by oxygenolysis of TiCI4 was studied with emphasis on the effects of reaction conditions on the particle size of the products. The particle size of TiO2(anatase) decreased with increasing reaction temperature or O2concentration and with decreasing TiCI4 concentration. The results are compared with those for the oxygenolysis of AlBr3and SiCI4. It was found that the reactivity of metal halides with O2 is closely related to the ease of dissociation of the first halogen atom.  相似文献   

8.
Monosized spheroidal doped TiO2 particles with an average diameter of 0.3 to 0.7 μm were prepared by the controlled cohydrolysis of mixtures of titanium alkoxide and either niobium or tantalum alkoxide. An inorganic salt precipitation technique was used to put Ba, Cu, or Sr onto the surface of singly doped TiO2 particles. Chemical analyses by several methods demonstrated the reproducibility and reliability of the doping procedures  相似文献   

9.
10.
We characterized SiO2–TiO2 nano-hybrid particles, prepared using the sol–gel method, using high-resolution transmission microscopy. A few nanometer-ordered TiO2 anatase crystallites could be observed on the monodispersed SiO2 nanoparticle surface. The quantum size effect of the TiO2 anatase crystallites is attributed to the blue shift of the absorption band. The rough surface of the SiO2–TiO2 nano-hybrid particles was derived from the developed growth planes of the TiO2 anatase crystallites, grown from fully hydrolyzed Ti alkoxide that did not react with acetic acid during the crystallization process at 600°C thermal annealing.  相似文献   

11.
Titanium diboride can be produced by ball-milling a mixture of TiO2, B2O3, and Mg metal for between 10 and 15 h. The reaction was found to be completed during the milling with no evidence of residual Mg. The unwanted phase, MgO, was readily removed by leaching in acid. The leached powder obtained after 15 h milling had a particle size of <200 nm and was highly faceted. The particle size decreased to ∼50 nm after 100 h milling and seemed to be relatively monodisperse. Scherrer calculation of the crystallite size showed that the product particles were probably single crystal.  相似文献   

12.
Uniform CeO2 / TiO2 composite nanoparticles with different Ce/Ti molar ratios have been successfully synthesized via the sol–gel method. The samples were characterized using differential thermal analysis (DTA), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The surface state analysis by means of X-ray photoelectron spectroscopy (XPS) shows that the Ti element mainly exists as a chemical state of Ti4+, while the Ce element exists as a mixture of Ce3+ and Ce4+ oxidation states. The photocatalytic degradation of methyl orange (MeO) in CeO2 / TiO2 suspension was investigated. The results indicate that the CeO2/TiO2 nanocomposites show higher photocatalytic activity than pure TiO2. Photodegradation of MeO can be improved by increasing the Ce/Ti molar ratio in the initial 15 min.  相似文献   

13.
Scanning electron microscopy and electron probe micro-analysis were used to investigate the microstructure of both slow-cooled and quenched polycrystalline BaTiO3 specimens with a small excess of TiO2 (Ba/Ti=0.995 to 0.999) or of BaO (Ba/Ti=1.002 and 1.005). The electron micrographs of polished and etched TiO2-excess BaTiOs samples, and of fracture surfaces of quenched samples, showed a second phase in the grain boundaries and triple-point regions, whereas no second phase was observed in samples having Ba/Ti=1.000. Microprobe analysis of the second phase gave compositions near that of the reported adjacent phase of higher TiO2 content, Ba6Ti17O40. The results indicate that the solubility of TiO2 in BaTiO3 is <0.1 mol%.  相似文献   

14.
Barium titanate has been prepared by solid-state reaction of nanocrystalline TiO2 (70 nm) with BaCO3 of different particle size (650, 140, and 50 nm). The results give evidence of a strong effect of the size of BaCO3 in the solid-state synthesis of barium titanate. The use of nanocrystalline BaCO3 already leads to formation of the single-phase BaTiO3 after calcination for 8 h at 800°C. The final powder consists of primary particles of ≈100 nm, has a narrow particle size distribution with d 50=270 nm, and no agglomerates larger than 800 nm. For the coarser carbonate, 4 h calcination at 1000°C are required and the final powder is much coarser. Solid-state reaction of nanocrystalline BaCO3 and TiO2 represents an alternative to chemical preparation routes for the production of barium titanate ultrafine powders.  相似文献   

15.
In the TiO2-SiO2 system, anatase solid solutions (ss) containing up to similar/congruent ∼15 mol% SiO2 are formed in the as-prepared state by the hydrazine method. The lattice parameters a and c decrease linearly from 0.3785 to 0.3776 nm and from 0.9514 to 0.9494 nm, respectively, with increased SiO2 content. At high temperatures, the solid solutions by transformation decompose into rutile and amorphous SiO2. The anatase(ss) powders have been characterized for particle size and surface area. They consist of very fine particles (7-25 nm). Surface areas at low temperatures are very high and do not drop below 60 m2/g at 1000°C. Nanostructured anatase(ss) ceramics, with greaterthan/equal to 99.5% of theoretical density and an average grain size of 72 nm, have been fabricated by hot isostatic pressing for 1 h at 850°C and 196 MPa. Their mechanical and electrical properties have been examined.  相似文献   

16.
This paper reports on the microstructure of anodic titanium oxide (TiO2) and its use in a dye-sensitized solar cell (DSSC) device. When voltages of 60 V were applied to titanium foil for 2 hr under 0.25 wt% NH4F+ 2 vol% H2O+C2H4(OH)2, TiO2 with a nanotube structure was formed. The film, which had a large surface area, was used as an electron transport film in the DSSC. The DSSC device had a short-circuit current density (Jsc) of 12.52 mA cm−2, a fill factor (FF) of 0.65, an open-voltage (Voc) of 0.77 V, and a photocurrent efficiency of 6.3% under 100% AM 1.5 light. The internal impedance values under 100%, 64%, 11%, and 0% (dark) AM 1.5 light intensities were measured and simulated using the electrical impedance spectroscopy (EIS) technique. The impedance characteristics of the DSSC device were simulated using inductors, resistors, and capacitors. The Ti/TiO2, TiO2/Electrolyte, electrolyte, and electrolyte/(Pt/ITO) interfaces were simulated using an RC parallel circuit, and the bulk materials, such as the Ti, ITO and conducting wire, were simulated using a series of resistors and inductors. The impedance of the bulk materials was simulated using L0+R0+Rb, the impedance of the working electrode was simulated using (C1//R1)//(Ra+(C2//R2), the electrolyte was simulated using C3//R3, and the counter electrode was simulated using C4//R4.  相似文献   

17.
Interstitial titanium-chromium oxynitrides in the solid solution series Ti1− z Cr z (O x N y ) ( z = 0.2, 0.4, 0.5, 0.6, 0.8) have been obtained by ammonolysis of the TiO2/Cr2O3 precursors resulting from the coprecipitation method. The precursors and the resulting oxynitrides were characterized by auger electron spectroscopy, X-ray diffraction analysis, electron probe microanalysis, transmission electron microscopy, and BET surface area techniques. Compounds in the Ti1− z Cr z (O x N y ) series are prepared as single phases by nitridation at 1073 K for 8 h. The as-synthesized oxynitride powders contain only Ti1− z Cr z (O x N y ) with cubic structure and the particle size is in the nanometer scale.  相似文献   

18.
Laser interference lithography is an established fabrication technique for periodic arrays such as photonic crystals (PCs). In this paper, we report the fabrication of a TiO2-organic hybrid periodic array by nanosecond laser interference lithography. TiO2-organic hybrid films were prepared from titanium tetra- n -butoxide and 2-(methacryloyloxy) ethyl acetoacetate (MEAcAc) by the sol–gel method. The films were irradiated by using 10 ns pulses of 355 nm diffracted light from a Nd:yttrium–aluminum–garnet laser. The complexes formed by the Ti alkoxide and the MEAcAc were decomposed by laser irradiation, and the irradiated parts remained as periodic dot arrays on the substrate after the development. The two-dimensional array of this TiO2-organic hybrid material was calcined at 450°C and formed an anatase TiO2 dot array. The refractive index measured was 2.00. These dots were crack free and adherent to the substrate.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号