首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
采用拉伸力学性能测试、金相显微观察、扫描电镜及透射电镜等分析手段,研究了Al-4.5Zn-1.0Mg-0.5Cu-0.4Ag合金的强化固溶行为.结果表明:经强化固溶处理后,合金固溶态的抗拉强度和屈服强度以及伸长率分别较常规固溶的低15 MPa、16 MPa和1.7%;峰值时效态的抗拉强度和屈服强度较常规固溶的分别高62...  相似文献   

2.
采用电导率、硬度测试、拉伸性能测试、X射线衍射仪(XRD)分析、电子背散射衍射检验(EBSD)、晶间与剥落腐蚀试验,研究了不同初始形变储能超高强铝合金Al-11.54Zn-3.51Mg-2.26Cu-0.24Zr-0.0025Sr挤压材在不同升温速率与固溶时间下组织性能的影响。结果表明:慢速升温退火能够降低合金的晶粒尺寸,24 h固溶较2 h固溶能够减少合金难溶第二相。合金硬度值在HV 220左右,快速升温合金硬度较慢速升温合金的硬度高。导电率在25.0%IACS左右。慢速升温2 h固溶、24 h固溶时效后合金试样的屈服强度由647.9 MPa变为697.1 MPa,增加了49.2 MPa。强度的提升主要来自于固溶强化与时效沉淀析出相强化的总强化,其次为低角度晶界强化。快速升温、慢速升温24 h固溶X方向合金试样的晶间腐蚀深度分别为42.17,64.70μm,晶间腐蚀等级为3级,合金的抗剥落腐蚀性能Y方向明显好于X方向,固溶24 h合金抗剥落腐蚀性能较固溶2 h得到了轻微改善。  相似文献   

3.
通过光学显微镜(OM)、X射线衍射仪(XRD)、扫描电镜(SEM)和力学试验,研究了510℃下固溶处理20h所得Mg-15Gd-2Zn-0.6Zr合金的组织结构及力学性能。结果表明,铸态Mg-15Gd-2Zn-0.6Zr合金主要由树枝状α-Mg基体以及分布于枝晶间的(Mg,Zn)_3Gd共晶相组成;固溶处理后,合金相组成未发生变化,而(Mg,Zn)_3Gd相形貌由连续网状转变为不连续岛状,体积分数由19%下降为9%;固溶态合金中未观察到长周期堆垛有序结构的形成。拉伸条件下,固溶态Mg-15Gd-2Zn-0.6Zr合金屈服强度比铸态略有下降,但抗拉强度和延伸率均有较大提高,其屈服强度、抗拉强度和延伸率依次为176 MPa、277 MPa和12.8%,表现出优良的综合力学性能;压缩条件下,铸态和固溶态Mg-15Gd-2Zn-0.6Zr合金的力学性能差异较小,且均优于拉伸条件下的力学性能。  相似文献   

4.
Al-11Zn-2.4Mg-1.1Cu-0.15Zr铝合金自然时效的速度慢,且不稳定,故一般不在自然时效状态下应用.为了获得更高的强度、较好的抗蚀性、较低的疲劳裂纹扩展速度以及性能的稳定,该系合金一般采用人工时效处理.热处理工艺参数主要包括固溶处理温度、固溶处理时间、时效温度、时效时间.本实验研究了时效工艺对Al-11Zn-2.4Mg-1.1Cu-0.15Zr铝合金性能的影响,旨在摸索Al-11Zn-2.4Mg-1.1Cu-0.15Zr铝合金的合理热处理工艺.  相似文献   

5.
通过维氏硬度试验、力学性能试验以及透射电镜观察,研究了Al-5.87Zn-2.07Mg-2.42Cu合金在最终形变热处理(固溶—预时效—变形—终时效)过程中的组织演变和力学性能,并优化出最适宜的工艺制度。结果表明,Al-5.87Zn-2.07Mg-2.42Cu合金最适宜的形变热处理工艺为480℃/1 h+100℃/8 h+30%+120℃/10 h。100℃/8 h预时效处理后,合金基体内弥散析出大量细小的沉淀相。经30%冷变形引入位错后进行120℃/10 h终时效处理,析出相数量增多且尺寸增大。最终形变热处理后合金的硬度、抗拉强度和屈服强度分别为200 HV、645 MPa和621MPa,分别比T6态合金的增加了19 HV、67 MPa和110 MPa。  相似文献   

6.
采用拉伸试验、金相、扫描电镜、透射电镜高分辨组织分析方法,研究了水冷铜模铸造的扁锭轧制的Al-3.0Si-0.6Mg-0.4Cu-0.6Mn-0.18Fe合金薄板经400℃至540℃不同温度保温30 min水淬、室温停放90 d(自然时效)后的组织和性能.结果表明:在6009合金基础上提高Si的质量分数至3%,有提高其强度的作用;该合金薄板经540℃×30 min固溶处理自然时效后屈服强度为180 MPa、抗拉强度为313 MPa、延伸率接近23%,其组织中存在Si结晶相及含Fe、Mn和少量Cu、Si的结晶相,以及尺寸小于0.5μm的以含Mn为主并含少量Si和Fe的弥散相;提高其固溶处理温度至540℃,合金薄板的强度明显提高,其原因是析出强化产物尺寸增大,密度提高了.  相似文献   

7.
采用OM、SEM、TEM以及硬度测试和拉伸力学性能测试等手段,研究了双级时效对Mg-2.8Nd-0.4Zn-0.5Zr合金显微组织和力学性能的影响。结果表明,合金经260℃/30 min+200℃/4 h双级时效处理后,其抗拉强度和屈服强度较200℃/14 h单级时效合金分别提高23 MPa和20 MPa,并且达到硬度峰值所需时间缩短9.5 h。主要是由于第一级高温预时效过程中析出β1相,在第二级时效过程中,β1相保留,同时又析出β″相,并且β″相尺寸较单级时效后的合金更细小。在两种析出相同时作用的情况下,其强化效果明显优于单一β″相强化的单级时效处理。  相似文献   

8.
利用光学显微镜(OM)、扫描电子显微镜(SEM)、能谱仪(EDS)、 X射线衍射仪(XRD)、拉伸实验、失重实验与电化学实验研究了热处理工艺对压铸Mg-7Al-1Ca-0.5Sn合金组织,力学性能和腐蚀性能的影响。结果表明:压铸态Mg-7Al-1Ca-0.5Sn合金组织由α-Mg, Mg_(17)Al_(12)相和CaMgSn相所组成,平均晶粒尺寸约为13.1μm。压铸态合金力学性能可达到:抗拉强度258.36 MPa、屈服强度188.08 MPa和伸长率10.21%。固溶处理(T4:400℃×15 h)使大部分Mg_(17)Al_(12)相溶入基体并改善第二相的形貌,组织中Mg_(17)Al_(12)相和CaMgSn相的形貌由网状和短棒状向粒状转化。固溶+时效处理(T6:400℃×15 h+200℃×15 h)使得Mg_(17)Al_(12)相以粒状在基体上弥散析出,且晶粒尺寸增大幅度较小,从而使合金获得良好的弥散强化效果。T6处理后合金的力学性能可以达到:抗拉强度306.69 MPa及伸长率14.98%,其比压铸态合金分别提高了18.7%和46.7%。热处理能够降低合金的腐蚀电位,增大腐蚀电流密度,从而降低Mg-7Al-1Ca-0.5Sn合金的耐蚀性。在相同腐蚀时间下, T4态合金腐蚀最为严重, T6态合金的次之,而铸态合金腐蚀最轻。  相似文献   

9.
时效对新型Al-Zn-Mg-Cu合金力学及应力腐蚀性能的影响   总被引:2,自引:1,他引:1  
通过力学性能和电导率测试、慢应变速率试验(SSRT)以及显微组织TEM分析,研究了不同时效制度对新型Al-7.5Zn-1.7Mg-1.4Cu-0.12Zr合金力学及应力腐蚀性能的影响。结果表明,合金的力学性能和应力腐蚀性能与时效制度密切相关。T6状态下,晶内析出相弥散细小,晶界析出相呈连续分布,合金的强度最高,抗应力腐蚀性能最差;经T7双级过时效处理后,晶界析出相粗化呈离散分布,出现明显宽化的晶间无析出带,合金的抗应力腐蚀性能得到明显提高,但其强度损失较多。经三级时效处理后,合金的组织综合了T6态和T7态的优点,使合金既有高的强度又有良好的抗应力腐蚀性能,合金的极限抗拉强度、屈服强度、伸长率和电导率分别达到580,570 MPa,16.7%和23.3 MS.m-1。  相似文献   

10.
Cu-Ag-Cr合金的强化机制及定量探讨   总被引:1,自引:1,他引:0  
采用中频熔炼-铸造-热轧-固溶-冷轧-时效处理工艺制备了Cu-Ag-Cr合金。通过拉伸力学性能测试、硬度测试和透射电子显微镜观察,研究了微量Cr和Ag对固溶-预冷变形-时效合金组织和性能的影响,探讨了Cu-Ag-Cr合金的主要强化机制,并用理论计算来预测Cr对合金屈服强度的增量。结果表明:微量Ag在Cu-0.1Ag-0.5Cr合金中主要以固溶形式存在,微量Cr在时效态Cu-0.1Ag-0.5Cr合金中主要以单质Cr粒子形式存在,Cr粒子的尺寸约为几个到十几个纳米,呈现共格畸变产生的豆瓣状析出相衬度,与基体共格,冷轧后时效态组织中有部分保留的位错亚结构。细小弥散分布的析出相质点能够强烈地钉扎位错,对形变组织中的亚结构具有稳定作用,阻碍位错运动和亚晶界的合并,从而使合金中仍能保持较高的位错密度,延缓回复过程和再结晶形核的开始。Cu-0.1Ag-0.5Cr合金的强化机制是Ag的固溶强化、预冷变形引入的亚结构强化和Cr粒子的析出强化。理论计算的屈服强度增量,与实验测试的Cu-Ag-Cr合金屈服强度增量很接近,计算值与实测值相差5.5%。Cr的析出强化量可以由计算近似得到。  相似文献   

11.
用扫描电镜(SEM)、透射电子显微镜(TEM)、涡流电导率测量仪和万能试验机测试分别测量了上引拉铸拉拔之后固溶时效对Cu-0.3Cr-0.1Zr合金抗拉强度及导电率性能的影响,用金相显微镜观察不同拉拔加工率下固溶的显微组织.并探讨了合金的强化机理.结果表明:上引Cu-0.3Cr-0.1Zr合金铸锭经过75%冷拉变形后固溶其组织和力学性能较好.经时效后的固溶态Cu-0.3Cr-0.1Zr合金,抗拉强度和导电率迅速上升,随着时间时间的延长,其抗拉强度达到峰值后呈下降趋势,而导电率则继续上升.Cu-Cr-Zr合金析出强化的重要因素是大量共格弥散的析出相,以共格强化机制估算的强化值423MPa与实验结果415MPa相近.  相似文献   

12.
以挤压态的6013铝合金为研究对象,通过显微硬度测试、单向拉伸实验和组织分析,研究了自然时效、人工时效和回归再时效处理时合金的力学性能变化规律。结果表明:自然时效峰值状态(16 d)的抗拉强度为286 MPa,屈服强度为158 MPa,屈强比为0.54,适合塑性成形;将自然时效峰值状态下的试样进行回归再时效处理(210 °C回归0.5 h+170 °C峰值时效2 h),抗拉强度为362 MPa,屈服强度为336 MPa,屈强比达到0.92,抗塑性变形能力显著增强。这是因为回归再时效后析出相的尺寸减小,数密度显著增大,析出强化效果显著增强。而析出强化对屈服强度和抗拉强度的影响程度不同,因此可通过时效热处理来调控屈强比,即通过自然峰值时效提高合金的塑性变形性能以成形零件,而在零件成形后采用回归再时效提高其抗变形能力。   相似文献   

13.
采用光学显微镜和透射电子显微镜等对500 MPa级Nb Ti微合金化方矩形管用钢的组织与性能进行了分析,研究了其强化机制。结果表明,终轧温度和卷取温度对试验钢的组织和力学性能有显著影响,在研究的温度范围内,终轧温度和卷取温度的降低均有利于获得更加细小的铁素体晶粒与细小弥散的第二相析出物;当卷取温度不变时,随着终轧温度的下降,屈服强度、抗拉强度和断后伸长率均升高;当终轧温度不变时,随着卷取温度的逐渐下降,屈服强度和抗拉强度呈现出先上升后下降的规律,而断后伸长率呈现出单调上升的规律;试验钢在终轧温度为840 ℃和卷取温度为570 ℃时可获得最优的综合力学性能,其屈服强度和抗拉强度分别为537和578 MPa,断后伸长率为33.5%;细晶强化是试验钢最主要的强化机制,由晶粒细化引起的强度增量占总强度的49%~51%,由固溶强化引起的强度增量次之,占总强度的23%~27%,由析出强化引起的强度增量较小,仅占总强度的3.8%~8.2%。  相似文献   

14.
 为了开发满足二次加工性能要求的500 MPa级高延性方管用钢,采用OM、SEM和TEM等对500 MPa级高延性方管用钢制管前后的组织与性能进行分析,研究了其强化机制与加工硬化机理。结果表明,两种试验钢的组织均由铁素体和少量珠光体组成,低C-低Mn-Nb、Ti微合金化试验钢铁素体晶粒与珠光体球团尺寸更加细小,第二相析出物尺寸稍大,位错密度相似。两种试验钢制管前力学性能相似,低C-低Mn-Nb、Ti微合金化试验钢屈强比较高;制管后低C-低Mn-Nb、Ti微合金化试验钢加工硬化程度显著,屈服强度、抗拉强度分别增加了45与26 MPa,伸长率降低6.0%,高C-高Mn-Nb微合金化试验钢屈服强度、抗拉强度分别增加了22与10 MPa,伸长率降低4.0%。固溶强化与细晶强化是两种试验钢最主要的强化机制,由晶粒细化引起的强度增量占总强度的52.9%~61.8%,由固溶强化引起的强度增量占总强度的17.2%~25.3%;析出强化与位错强化对强度的贡献较小。制管后低C-低Mn-Nb、Ti微合金化试验钢位错强化增加显著,达到了82 MPa,明显高于高C-高Mn-Nb微合金化试验钢位错强化的贡献(65 MPa);对于制管用途而言,高C-高Mn-Nb微合金化试验钢制管后综合力学性能更加优异。  相似文献   

15.
The mechanical properties of the hot-rolled plates of Ti steel and Ti-Mo steel after isothermal transformation in a temperature range of 600 700 ℃ for 60 min have been tested, and the microstructures of the matrix and the characteristics of precipitated nanometer-sized carbides have also been examined by scanning electron microscopy and transmission electron microscopy. The precipitation regularity of nanometer-sized carbides has been studied by thermodynamic method and the contributions of corresponding strengthening mechanisms to the total yield strength have been calculated. The tensile strength of hot-rolled Ti-Mo ferritie steel can achieve 780 MPa with an elongation of 20.0% after being isothermally treated at 600 ℃ for 60 rain, and the tensile strength of Ti steel is 605 MPa with an elongation of 22.7%, according to the results of tensile tests. The critical nucleation size of (Ti,Mo)C is smaller than that of TiC at a given isothermal temperature, but the nucleation rate of (Ti, Mo)C is larger than that of TiC. The grainrefinement strengthening and precipitation strengthening contribute the main amount of the total yield strength. The major increase in yield strength with the decrease of isothermal temperature results from the contribution of precipi tation strengthening. The contribution of precipitation strengthening to the yield strength of the steels has been esti mated. The ferrite phase can be strengthened by about 400 MPa through precipitation strengthening in Ti-Mo steel isothermally treated at 600 ℃ for 60 rain, which is about 200 MPa higher than that of Ti steel under the same conditions.  相似文献   

16.
The microstructures of Al-Zn-Mg-Cu-Zr al- loys with minor Sc were studied by using optical microscope(OM), scanning electron microscope (SEM) and transmission electron microscope(TEM). The tensile mechanical properties and electric conductivity of the studied alloys under different treatment conditions were tested. The results show that adding minor Sc can greatly fines the grain size of the Al-Zn-Mg-Cu-Zr alloy ingots and obviously improves the tensile properties and electric conductivity of the alloys. The strengthening mechanism is considered as fine grain strengthening, sub-structure strengthening and dispersion strengthening by Al3 (Sc, Zr).  相似文献   

17.
The Al-Mg-Mn-Zr-Er alloy sheets with a thickness of 4 mm were welded by TIG welding, the microstructures and mechanical properties of Al-Mg-Mn-Zr-Er alloy weld joints filled with F1.6 mm Al-Mg-Mn-Zr and Al-Mg-Mn-Zr-Er welding wires were studied by optical microscopy, scanning electron microscopy, transmission electron microscopy, hardness testing and tensile mechanical properties testing. The result showed that, the tensile strength increased by 57 MPa and the coefficient of weld joint reached 0.8 when Al-Mg-Mn-Zr-Er welding wire was used as filling material. The tensile strength and elongation of weld joint filled with Al-Mg-Mn-Zr-Er welding wire were 19% and 85% higher those that of filled with Al-Mg-Mn-Zr welding wire respectively, which resulted from grain refinement strengthening and dispersion strengthening of Al3Er.  相似文献   

18.
微合金高强度耐候钢的试验研究   总被引:4,自引:0,他引:4  
在实验室试制了400、460MPa级耐候钢,结果表明,试验钢屈服强度分别达到450、550MPa,抗拉强度分别达到545、615MPa;400MPa级耐候钢的显微组织以铁素体为主,460MPa级的以粒状贝氏体为主;400MPa级的析出物主要是CuS2和TiN,主要强化机制是细晶强化、析出强化;460MPa级的析出物主要是CuS2和(NbTi)CN,其主要强化机制是细晶强化、析出强化及相变强化。采用电子背散射EBSD技术分析了其晶体学取向,其晶粒间取向主要是大角度晶界。  相似文献   

19.
采用粉末冶金法制备出成分为Fe-12.5Cr-2.5W-0.4Ti-0.02V-0.4Y2O3(12Cr-ODS,质量分数,%)的铁素体钢.通过电镜观察及力学性能测试等手段研究了12Cr-ODS铁素体钢的组织与性能,并定量计算了不同强化机制对合金屈服强度的贡献.电镜观察发现12Cr-ODS钢为等轴的铁素体组织,平均晶粒尺寸为1.5μm,不同尺寸氧化物在基体中均匀分布.力学性能测试结果表明12Cr-ODS钢具有优异的室温拉伸性能,屈服强度达到738 MPa.合金主要强化机制为氧化物弥散强化、氧化物弥散强化钢加工强化、热错配位错强化和晶界强化机制,各种强化机制计算得到的理论屈服强度为750 MPa,与实测值吻合较好.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号