首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
D-type cyclins are necessary and rate-limiting for G1 progression during the mammalian cell cycle. Cyclins D1, D2, and D3 are encoded by distinct genes and are expressed in proliferating cells in a lineage-specific manner. Monoclonal antibodies (mAbs) generated to bacterially produced recombinant D-type cyclins were able to react with the native proteins expressed in mammalian cells. One mouse and three rat mAbs immunoprecipitated cyclin D1 from mouse macrophages. Only rat mAbs reacted with human cyclin D1 and cross-reacted with cyclin D2 expressed in proliferating T lymphocytes and human tumor cell lines. A single rat mAb to cyclin D2 exhibited a pattern of reactivity reciprocal to that of rat mAbs to D1. Three rat mAbs reacted specifically with mouse or human cyclin D3, but did not cross-react with cyclins D1 or D2 from either species. Representative mAbs were useful for immunoblotting and detected D-type cyclins coprecipitating in complexes recovered with antiserum to cyclin-dependent kinase-4 (CDK4). Because these mAbs detect D-type cyclins in the nuclei of fixed permeabilized cells, they should prove useful in documenting cyclin overexpression in those human tumors in which the genes are amplified or are targets of specific chromosomal rearrangements.  相似文献   

3.
Autocrine stimulation of the IL-2 receptor (IL-2R) is required for commitment of a T cell to enter the cell cycle and may involve transmission of the IL-2R signal to cell cycle control proteins. Candidates for such proteins are the D-type cyclins which are expressed in G1. Short-term cultures of primary human T cells were used to show that expression of cyclins D2 and D3 is regulated by IL-2 in a concentration- and time-dependent manner. Cyclin D2 RNA was induced rapidly to peak levels well before initiation of DNA synthesis and gradually declined during the remainder of G1. Cyclin D3 RNA and protein showed a slower induction during G1 to maximal levels as cells initiated DNA synthesis that remained high throughout S phase. Induction of cyclins D2 and D3 was independent of the cyclosporin A-sensitive calcineurin pathway and of rapamycin-sensitive pathways, despite the ability of rapamycin to severely inhibit entry into S phase. These observations suggest that cyclins D2 and D3 may monitor the IL-2R signal but that their induction does not guarantee entry into S phase. Rapamycin was found to target a pathway late in G1 that is distal to induction of D-type cyclin gene expression but proximal to DNA replication, perhaps involving the function of the D-type cyclin proteins or their associated kinases.  相似文献   

4.
Onconase is a 12 kDa protein homologous to pancreatic RNase A isolated from amphibian oocytes which shows cytostatic and cytotoxic activity in vitro, inhibits growth of tumors in mice and is in phase III clinical trials. The present study was aimed to reveal mechanisms by which onconase perturbs the cell cycle progression. Human histiocytic lymphoma U937 cells were treated with onconase and expression of cyclins D3 and E, as well as of the cyclin-dependent kinase inhibitors (CKIs) p16INK4A, p21WAF1/CIP1 and p27KIP1 (all detected immunocytochemically) was measured by multiparameter flow cytometry, in relation to the cell cycle position. Also monitored was the status of phosphorylation of retinoblastoma protein (pRb) by a novel method utilizing mAb which specifically detects underphosphorylated pRb in individual cells. Cell incubation with 170 nM onconase for 24 h and longer led to their arrest in G1 which was accompanied by a decrease in expression of cyclin D3, no change in cyclin E, and enhanced expression of all three CKIs. pRb was underphosphorylated in the onconase arrested G1 cells but was phosphorylated in the cells that were still progressing through S and G2/M in the presence of onconase. The cytostatic effect of onconase thus appears to be mediated by downregulation of cyclin D3 combined with upregulation of p27KIP1, p16INK4A and p21WAF1/CIP1, the events which may prevent phosphorylation of pRb during G0/1 and result in cell arrest at the restriction point controlled by Cdk4/6 and D type cyclins.  相似文献   

5.
Cyclins are regulatory subunits of the cyclin dependent kinases (CDKs), the enzymes that drive the cell through the respective phases and check-points of the cell cycle. The expression of cyclins in non-tumor cells, regulated by timely induction of their synthesis and proteolysis, is scheduled, occurring at discrete periods of the cell cycle. Using multiparameter flow cytometry we have recently observed that expression of cyclins B1 and E in individual normal lymphocytes mitogenically stimulated by phytohemagglutinin (PHA) and lymphocytic leukemic MOLT-4 cells was similar, restricted to particular phases of the cycle: cyclin B1 was detected only in G2+M- and cyclin E in late G1 and early S-phase cells. In the present study we have measured the expression of cyclins A, D2 and D3 in these cells. The presence of cyclin A was restricted to late S and G2 phases, both in the case of lymphocytes and of MOLT-4 cells. Over 95% of the non-stimulated lymphocytes were both cyclin D2 and D3 negative. Mitogenic stimulation with PHA-induced expression of cyclins D2 and D3 in over 50% cells, which corresponds to the percentage of cells that respond to this mitogen in cultures. Expression of these proteins peaked between 8 and 24 h after addition of PHA, and then decreased at the time of cell entrance to S. During exponential growth (48-72 h after stimulation with PHA) expression of the D-type cyclins was diminished: only between 5-10% of the lymphocytes had levels of cyclin D3 as high as G1 cells between 8-24 h after PHA stimulation. Populations of proliferating lymphocytes and MOLT-4 cells were very heterogeneous in terms of expression of D-type cyclins by individual cells. While expression of cyclin D2 in exponentially growing MOLT-4 cells was similar to that of proliferating lymphocytes, the percent of cells expressing cyclin D3 as well as the degree of expression, was higher in MOLT-4 cells, regardless of the phase of the cycle. These results, with our earlier observations of the untimely expression of cyclins B1 and E in several other tumor lines, suggest that altered expression of cyclins may be a frequent feature of malignancy.  相似文献   

6.
This study examines in vivo the role and functional interrelationships of components regulating exit from the G1 resting phase into the DNA synthetic (S) phase of the cell cycle. Our approach made use of several key experimental attributes of the developing mouse lens, namely its strong dependence on pRb in maintenance of the postmitotic state, the down-regulation of cyclins D and E and up-regulation of the p57(KIP2) inhibitor in the postmitotic lens fiber cell compartment, and the ability to target transgene expression to this compartment. These attributes provide an ideal in vivo context in which to examine the consequences of forced cyclin expression and/or of loss of p57(KIP2) inhibitor function in a cellular compartment that permits an accurate quantitation of cellular proliferation and apoptosis rates in situ. Here, we demonstrate that, despite substantial overlap in cyclin transgene expression levels, D-type and E cyclins exhibited clear functional differences in promoting entry into S phase. In general, forced expression of the D-type cyclins was more efficient than cyclin E in driving lens fiber cells into S phase. In the case of cyclins D1 and D2, ectopic proliferation required their enhanced nuclear localization through CDK4 coexpression. High nuclear levels of cyclin E and CDK2, while not sufficient to promote efficient exit from G1, did act synergistically with ectopic cyclin D/CDK4. The functional differences between D-type and E cyclins was most evident in the p57(KIP2)-deficient lens wherein cyclin D overexpression induced a rate of proliferation equivalent to that of the pRb null lens, while overexpression of cyclin E did not increase the rate of proliferation over that induced by the loss of p57(KIP2) function. These in vivo analyses provide strong biological support for the prevailing view that the antecedent actions of cyclin D/CDK4 act cooperatively with cyclin E/CDK2 and antagonistically with p57(KIP2) to regulate the G1/S transition in a cell type highly dependent upon pRb.  相似文献   

7.
8.
Cyclin D2 is a member of the family of D-type cyclins that is implicated in cell cycle regulation, differentiation, and oncogenic transformation. To better understand the role of this cyclin in the control of cell proliferation, cyclin D2 expression was monitored under various growth conditions in primary human and established murine fibroblasts. In different states of cellular growth arrest initiated by contact inhibition, serum starvation, or cellular senescence, marked increases (5- to 20-fold) were seen in the expression levels of cyclin D2 mRNA and protein. Indirect immunofluorescence studies showed that cyclin D2 protein localized to the nucleus in G0, suggesting a nuclear function for cyclin D2 in quiescent cells. Cyclin D2 was also found to be associated with the cyclin-dependent kinases CDK2 and CDK4 but not CDK6 during growth arrest. Cyclin D2-CDK2 complexes increased in amounts but were inactive as histone H1 kinases in quiescent cells. Transient transfection and needle microinjection of cyclin D2 expression constructs demonstrated that overexpression of cyclin D2 protein efficiently inhibited cell cycle progression and DNA synthesis. These data suggest that in addition to a role in promoting cell cycle progression through phosphorylation of retinoblastoma family proteins in some cell systems, cyclin D2 may contribute to the induction and/or maintenance of a nonproliferative state, possibly through sequestration of the CDK2 catalytic subunit.  相似文献   

9.
To explore the regulation and function of D-type cyclins in breast cancer cells, the mouse mammary hyperplastic epithelial cell line TM2H was treated with 5 mM hexamethylenebisacetamide (HMBA), a polar differentiation factor. The resulting growth-inhibitory effect of HMBA was completely reversible and was analyzed in terms of percent cells in G1; association of D-type cyclins with cyclin-dependent kinase (cdk) 4 and cdk6; G1 kinase activity; association of retinoblastoma protein (pRb) and phosphorylated pRb with D-type cyclins; and association of p16INK4a, p15INK4b, and p27Kip1 with cdk4 and cdk6. Synchronized TM2H cells were examined at 0, 3, 5, 9, 12, and 24 h after exposure to 5 mM HMBA. Inhibition of DNA synthesis, as measured by thymidine uptake, was first observed at 5 h (40%) and peaked at 24 h (80%). Flow cytometry at 9 h showed treated cells to be in G1 arrest. Western blot analysis showed weakly detectable cyclin D1 but readily detectable cyclin D2 and D3 proteins at 0 h; thereafter, cyclin D2 and D3 protein levels remained higher while cyclin D1 levels declined significantly in treated versus untreated cells. By 5 h (early G1), HMBA had markedly inhibited cdk4 and cdk6 kinase activity (67% and 75%, respectively) in treated versus untreated cells. By 9 and 12 h, pRb levels had increased 3.4-fold in treated versus untreated cells. At 5 h, cyclin D-associated pRb was totally hypophosphorylated in treated cells and hyperphosphorylated in untreated cells. The levels of pRb associated with cyclin D2 and D3 increased 2.89-fold and 4.6-fold, respectively, in treated versus untreated cells. At 5 h, treated cells showed a fivefold increase in cdk4-associated p27Kip1 and, at 9 h, a fourfold increase in cdk6-associated p27Kip1 over control levels. In confirmation of these data, HMBA was found to inhibit the growth of Rb-positive Du/145Rb cells but not their Rb-negative parental Du/145 cells. The data suggest that HMBA-induced growth inhibition is due to multifactorial mechanisms involving decreases in total cyclin D1 and inhibition of cdk4 and cdk6 kinase activities through elevation of levels of cdk4- and cdk6-associated p27Kip1 and concomitant increases in hypophosphorylated pRb and stable cyclin D2/pRb and cyclin D3/pRb complexes that help maintain pRb in a functional state.  相似文献   

10.
The passage of mammalian cells through the restriction point into the S phase of the cell cycle is regulated by the activities of Cdk4 and Cdk6 complexed with the D-type cyclins and by cyclin E/Cdk2. The activities of these holoenzymes are constrained by CDK inhibitory proteins. The importance of the restriction point is illustrated by its deregulation in many tumour cells and upon infection with DNA tumour viruses. Here we describe the properties of cyclins encoded by two herpesviruses, herpesvirus saimiri (HVS) which can transform blood lymphocytes and induce malignancies of lymphoid origin in New World primates, and human herpesvirus 8 (HHV8) implicated as a causative agent of Kaposi's sarcoma and body cavity lymphomas. Both viral cyclins form active kinase complexes with Cdk6 that are resistant to inhibition by the CDK inhibitors p16(Ink4a), p21Cip1 and p27Kip1. Furthermore, ectopic expression of a viral cyclin prevents G1 arrest imposed by each inhibitor and stimulates cell-cycle progression in quiescent fibroblasts. These results suggest a new mechanism for deregulation of the cell cycle and indicate that the viral cyclins may contribute to the oncogenic nature of these viruses.  相似文献   

11.
12.
The steroid hormone progesterone regulates proliferation and differentiation in the mammary gland and uterus by cell cycle phase-specific actions. In breast cancer cells the predominant effect of synthetic progestins is long-term growth inhibition and arrest in G1 phase. Progestin-mediated growth arrest of T-47D breast cancer cells was preceded by inhibition of cyclin D1-Cdk4, cyclin D3-Cdk4, and cyclin E-Cdk2 kinase activities in vitro and reduced phosphorylation of pRB and p107. This was accompanied by decreases in the expression of cyclins D1, D3, and E, decreased abundance of cyclin D1- and cyclin D3-Cdk4 complexes, increased association of the cyclin-dependent kinase (CDK) inhibitor p27 with the remaining Cdk4 complexes, and changes in the molecular masses and compositions of cyclin E complexes. In control cells cyclin E eluted from Superdex 200 as two peaks of approximately 120 and approximately 200 kDa, with the 120-kDa peak displaying greater cyclin E-associated kinase activity. Following progestin treatment, almost all of the cyclin E was in the 200-kDa, low-activity form, which was associated with the CDK inhibitors p21 and p27; this change preceded the inhibition of cell cycle progression. These data suggest preferential formation of this higher-molecular-weight, CDK inhibitor-bound form and a reduced number of cyclin E-Cdk2 complexes as mechanisms for the decreased cyclin E-associated kinase activity following progestin treatment. Ectopic expression of cyclin D1 in progestin-inhibited cells led to the reappearance of the 120-kDa active form of cyclin E-Cdk2 preceding the resumption of cell cycle progression. Thus, decreased cyclin expression and consequent increased CDK inhibitor association are likely to mediate the decreases in CDK activity accompanying progestin-mediated growth inhibition.  相似文献   

13.
Inactivation of the retinoblastoma gene product (pRb) occurs concomitant with the appearance of its hyperphosphorylated form in mid to late G1. Multiple cyclin/CDK complexes are implicated in the cell cycle phosphorylation of pRb. Using in vivo expression systems, we show that cyclins A, E, D1, D2, and D3 each function to phosphorylate and inactivate pRb. In vivo, G1 cyclin/kinase complexes enhance the phosphorylation of pRb, and these effects of cyclin/kinases on pRb can be overcome by the addition of p21, a wide spectrum inhibitor of G1 kinases. Kinases associated with cyclins A, E, and D1 phosporylate pRb indistinguishably in vivo, according to proteolytic maps. Although cyclin D1 has been reported to bind to pRb directly, requiring the pRb-binding motif LXCXE, a mutant D1 lacking the pRb-binding motif remains able to phosphorylate pRb in vivo and in vitro and is also able to reverse the growth-inhibitory properties of pRb in intact cells. Finally, coexpression of G1 cyclins and kinases represses pRb-mediated growth inhibition in Saos-2 cells. The multiplicity of mechanisms for pRb phosphorylation and inactivation suggests that several pathways exist for the regulation of pRb by phosphorylation.  相似文献   

14.
The cyclin-dependent kinase Cdk2 associates with cyclins A, D, and E and has been implicated in the control of the G1 to S phase transition in mammals. To identify potential Cdk2 regulators, we have employed an improved two-hybrid system to isolate human genes encoding Cdk-interacting proteins (Cips). CIP1 encodes a novel 21 kd protein that is found in cyclin A, cyclin D1, cyclin E, and Cdk2 immunoprecipitates. p21CIP1 is a potent, tight-binding inhibitor of Cdks and can inhibit the phosphorylation of Rb by cyclin A-Cdk2, cyclin E-Cdk2, cyclin D1-Cdk4, and cyclin D2-Cdk4 complexes. Cotransfection experiments indicate that CIP1 and SV40 T antigen function in a mutually antagonistic manner to control cell cycle progression.  相似文献   

15.
CDC37, an essential gene in Saccharomyces cerevisiae, interacts genetically with multiple protein kinases and is required for production of Cdc28p/cyclin complexes through an unknown mechanism. We have identified mammalian p50Cdc37 as a protein kinase-targeting subunit of the molecular chaperone Hsp90. Previously, p50 was observed in complexes with pp60v-src and Raf-1, but its identity and function have remained elusive. In mouse fibroblasts, a primary target of Cdc37 is Cdk4. This kinase is activated by D-type cyclins and functions in passage through G1. In insect cells, Cdc37 is sufficient to target Hsp90 to Cdk4 and both in vitro and in vivo, Cdc37/Hsp90 associates preferentially with the fraction of Cdk4 not bound to D-type cyclins. Cdc37 is coexpressed with cyclin Dl in cells undergoing programmed proliferation in vivo, consistent with a positive role in cell cycle progression. Pharmacological inactivation of Cdc37/Hsp90 function decreases the half-life of newly synthesized Cdk4, indicating a role for Cdc37/Hsp90 in Cdk4 stabilization. This study suggests a general role for p50Cdc37 in signaling pathways dependent on intrinsically unstable protein kinases and reveals a previously unrecognized chaperone-dependent step in the production of Cdk4/cyclin D complexes.  相似文献   

16.
The accumulation of G1 cell cycle-related proteins by resting or cycling B cells stimulated with B cell antigen receptor (BCR)- and T helper (Th) cell-derived signals is documented. Resting B cells constitutively express cyclin dependent kinase (cdk)4, cdk2 and the cyclin dependent kinase inhibitor (CKI), p27. The initiation of optimal proliferation with F(ab')2 anti-mu plus paraformaldehyde-fixed CD40 ligand-baculovirus-infected Sf9 cells (CD40L/Sf9 cells) increases accumulation of both cdk4 and cdk2 while decreasing p27 levels. B cells express cyclin D2 early during cycle progression, while cyclin D3 and E are not expressed until 18 h poststimulation and cyclin A by 24 h poststimulation. Cycling B cells express heightened levels of all these cyclins and cdks. Although neither BCR- nor CD40-mediated signals appreciably alter cycling B cell accumulation of cyclins D2, cdk4 and cdk2, the absence of BCR-derived signals results in a decreased accumulation of cyclins D3 and E. Finally, CD40-mediated signals induce resting B cells to accumulate the CKI, p21, while cycling B cells require both BCR- and CD40-mediated signals to maintain increased expression of p21. Thus, a Th cell-derived signal may impact upon both resting and cycling B cell cycle progression, at least in part, by regulating the accumulation of p21. The functional consequences of p21 accumulation as cells enter and move through the cell cycle are discussed.  相似文献   

17.
18.
Cell cycle proteins regulate the transitions from G1 to S and G2 to M phases. In higher eukaryotes, their function is controlled by intracellular cascades regulated by extracellular growth factors. We have studied in previously described transgenic mouse models for thyroid proliferative diseases the expression of the key proteins regulating the cell cycle by Western blotting and immunohistochemistry, and have correlated the observations with the known actions of the transgenes on the signal transduction cascades. In the adenosine A2a receptor model, the cyclic AMP pathway, upstream of the Rb family cell division block, is constitutively activated. In the model expressing HPV 16 E7 protein, the Rb-like proteins are inhibited. Cyclin-dependent kinases cdk4, cdk2 and cdc2, and the associated cyclins D, E and A have been studied. Cyclin D3 appears as the major cyclin D subtype expressed in mouse thyroid epithelial cells in normal and transgenic mice. In the adenosine A2aR model, all cell cycle proteins tested were accumulated. In the E7 model, all cell cycle proteins except for D-type cyclins and cdk4 were also accumulated. A similar pattern was observed in thyroids coexpressing both transgenes, suggesting a dominant effect of E7 over the consequences of the cAMP cascade activation. The cyclin-dependent kinase inhibitors p21cip1/waf1 and p27kip1 were not downregulated in these proliferating thyroids which suggest other roles than the inhibition of the cell cycle progression.  相似文献   

19.
Cyclins are implicated in the induction and control of the cell cycle. Cyclin D1 regulates G1-phase progression by phosphorylation of the retinoblastoma protein (pRb). The Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 (KSHV) contains and transcribes an open reading frame with sequence similarities to cellular D-type cyclins. The KSHV-cyclin protein is associated with kinase activity capable of phosphorylating pRb in vitro. Here, we study for the first time the endogenous cyclin D1 and Rb protein expression in Kaposi's sarcoma (KS) tissue. Twenty-four consecutive biopsies of AIDS-related (n=21) and classical (n=3) KS were studied by immunohistochemistry with monoclonal antibodies against cyclin D1 and pRb. We detected cyclin D1 in 1 of 13 patch/plaque stage, in 4 of 5 nodular stage and in 3 of 6 visceral KS lesions. By Western blot analysis, this cellular cyclin D1 monoclonal antibody did not cross-react with the purified KSHV-cyclin protein. The pRb was consistently detected in 24 of 24 KS lesions. In summary, early KS lesions rarely have detectable expression of endogenous cyclin D1. Advanced and disseminated KS lesions tend to have overexpression of endogenous cyclin D1. Therefore, cellular cyclin D1 expression appears to correlate with tumor progression in KS. The endogenous cyclin D1 is antigenically distinct from the KSHV-cyclin homolog. The pRb, which may serve as a substrate for KSHV-cyclin, is found in all KS lesions examined.  相似文献   

20.
New functional activities for the p21 family of CDK inhibitors   总被引:2,自引:0,他引:2  
The association of cdk4 with D-type cyclins to form functional kinase complexes is comparatively inefficient. This has led to the suggestion that assembly might be a regulated step. In this report we demonstrate that the CDK inhibitors p21(CIP), p27(KIP), and p57(KIP2) all promote the association of cdk4 with the D-type cyclins. This effect is specific and does not occur with other cdk inhibitors or cdk-binding proteins. Both in vivo and in vitro, the abundance of assembled cdk4/cyclin D complex increases directly with increasing inhibitor levels. The promotion of assembly is not attributable to a simple cell cycle block and requires the function of both the cdk and cyclin-binding domains. Kinetic studies demonstrate that p21 and p27 lead to a 35- and 80-fold increase in K(a), respectively, mostly because of a decrease in K(off). At low concentrations, p21 promotes the assembly of active kinase complexes, whereas at higher concentrations, it inhibits activity. Moreover, immunodepletion experiments demonstrate that most of the active cdk4-associated kinase activity also associates with p21. To confirm these results in a natural setting, we examine the assembly of endogenous complexes in mammary epithelial cells after release from a G(0) arrest. In agreement with our other data, cyclin D1 and p21 bind concomitantly to cdk4 during the in vivo assembly of cdk4/cyclin D1 complexes. This complex assembly occurs in parallel to an increase in cyclin D1-associated kinase activity. Immunodepletion experiments demonstrate that most of the cellular cyclin D1-associated kinase activity is also p21 associated. Finally, we find that all three CIP/KIP inhibitors target cdk4 and cyclin D1 to the nucleus. We suggest that in addition to their roles as inhibitors, the p21 family of proteins, originally identified as inhibitors, may also have roles as adaptor proteins that assemble and program kinase complexes for specific functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号