首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Induced plant responses to attack by chewing insects have been intensively studied, but little is known about plant responses to nonchewing insects or to attack by multiple herbivores with different feeding habits. We examined volatile emissions by tobacco, Nicotiana tabacum, in response to feeding by the piercing–sucking insect western flower thrips (WFT), Frankliniella occidentalis, the chewing herbivore Heliothis virescens, and both herbivores simultaneously. In addition, we examined the effects of herbivore-induced plant defenses on host-plant selection by WFT. Plants responded to thrips feeding by consistently releasing five compounds. Simultaneous feeding by WFT and H. virescens elicited the same 11 compounds emitted in response to caterpillar feeding alone; however, two compounds, α-humulene and caryophyllene oxide, were produced in greater amounts in response to simultaneous herbivory. In choice tests, thrips consistently preferred uninduced plants over all other treatments and preferred plants damaged by caterpillars and those treated with caterpillar saliva over those treated with caterpillar regurgitant. The results are consistent with a previous finding that caterpillar regurgitant induces the release of significantly more volatile nicotine than plants damaged by caterpillars or plants treated with caterpillar saliva. A repellent effect of nicotine on WFT was confirmed by encircling unwounded plants with septa releasing volatile nicotine. Our results provide the first direct evidence that thrips feeding induces volatile responses and indicates that simultaneous herbivory by insects with different feeding habits can alter volatile emissions. In addition, the findings demonstrate that induced plant responses influence host-plant selection by WFT and suggest that the induction of volatile nicotine may play a role in this process.  相似文献   

2.
Phytochemical defense responses of plants are often herbivore-specific and can be affected by a herbivore’s feeding mode. However, comprehensive studies documenting the impact of multiple herbivores from different feeding guilds on induced phytochemical responses in distal leaves and its consequences for plant-mediated herbivore interactions are limited and findings are inconsistent. We investigated how herbivory by leaf-chewing caterpillars, cell-content feeding spider mites and phloem-feeding aphids and whiteflies affect secondary metabolomes and phytohormone levels in youngest, non-damaged cotton leaves (distal leaves). Furthermore, bioassays with caterpillars were conducted to assess their performance on distal leaves of plants infested with different herbivores. Caterpillars, and to a lesser degree spider mites, led to a systemic induction of terpenoids with negative consequences for caterpillar performance in the bioassays. Both herbivores reduced levels of various nutrients and potentially antioxidative compounds. Caterpillar damage increased levels of jasmonoyl-L-isoleucine and abscisic acid (ABA), whereas spider mite infestation had no effect on phytohormone levels. Aphid and whitefly infestation did not systemically affect secondary metabolites. Aphids decreased salicylic acid levels while whitefly-infested plants contained increased ABA levels. Neither aphid nor whitefly infestation affected caterpillar performance. In general, feeding mode of a herbivore can affect systemically induced changes in phytochemistry and plant-mediated indirect interactions even though the two phloem-feeding herbivores triggered different phytohormonal responses. The observed reduction of nutrients and potentially antioxidative compounds upon caterpillar and spider mite herbivory underlines the importance of further elucidating the role of resource sequestration as a potential systemic defensive response following herbivory by chewers and cell-content feeding herbivores.  相似文献   

3.
The effect of volatiles related to feeding activity of nonprey caterpillars, Spodoptera exigua, on the olfactory response of the predatory mites Phytoseiulus persimilis was examined in a Y-tube olfactometer. At a low caterpillar density (20 caterpillars on 10 Lima bean leaves), the predators were significantly more attracted to volatiles from infested leaves on which the caterpillars and their products were present or from infested leaves from which the caterpillars and their products had been removed when compared to volatiles from uninfested leaves. The predators, however, significantly avoided odors from 20 caterpillars and their products (mainly feces) removed from bean leaves. In contrast, at a higher caterpillar density (100 caterpillars on 10 Lima bean leaves), the predators avoided volatiles from caterpillar-infested bean leaves. Volatiles from infested leaves from which the caterpillars and their products had been removed were not preferred over volatiles from uninfested leaves. Volatiles from feces collected from 100 caterpillars were strongly avoided by the predators, while the behavior of the predatory mites was not affected by volatiles from 100 caterpillars removed from a plant. The data show that carnivorous arthropods may avoid nonprofitable herbivores. This avoidance seems to result from an interference of volatiles from herbivore products with the attraction to herbivore-induced plant volatiles.  相似文献   

4.
The vast majority of studies of plant indirect defense strategies have considered simple tritrophic systems that involve plant responses to attack by a single herbivore species. However, responses by predators and parasitoids to specific, herbivore-induced, volatile blends could be compromised when two or more different herbivores are feeding on the same plant. In Y-tube olfactometer studies, we investigated the responses of an aphid parasitoid, Diaeretiella rapae (McIntosh) (Hymenoptera: Braconidae), to odors from cabbage plants infested with the peach-potato aphid Myzus persicae (Sulzer) (Homoptera: Aphididae), in both the presence and absence of a lepidopteran caterpillar, Plutella xylostella L. (Lepidoptera: Plutellidae). Female parasitoids chose aphid-infested plants over uninfested plants but did not distinguish between caterpillar-infested and uninfested plants. When given a choice between odors from an aphid-infested plant and those from a plant infested with diamondback moth larvae, they significantly chose the former. Furthermore, the parasitoids responded equally to odors from a plant infested with aphids only and those from a plant infested with both aphids and caterpillars. The results support the hypothesis that the aphid and the caterpillar induce different changes in the volatile profile of cabbage plants and that D. rapae females readily distinguish between the two. Furthermore, the changes to the plant volatile profile induced by the caterpillar damage did not hinder the responses of the parasitoid to aphid-induced signals.  相似文献   

5.
Attraction of parasitoids to plant volatiles induced by multiple herbivory depends on the specific combinations of attacking herbivore species, especially when their feeding modes activate different defense signalling pathways as has been reported for phloem feeding aphids and tissue feeding caterpillars. We studied the effects of pre-infestation with non-host aphids (Brevicoryne brassicae) for two different time periods on the ability of two parasitoid species to discriminate between volatiles emitted by plants infested by host caterpillars alone and those emitted by plants infested with host caterpillars plus aphids. Using plants originating from three chemically distinct wild cabbage (Brassica oleracea) populations, Diadegma semiclausum switched preference for dually infested plants to preference for plants infested with Plutella xylostella hosts alone when the duration of pre-aphid infestation doubled from 7 to 14 days. Microplitis mediator, a parasitoid of Mamestra brassicae caterpillars, preferred dually-infested plants irrespective of aphid-infestation duration. Separation of the volatile blends emitted by plants infested with hosts plus aphids or with hosts only was poor, based on multivariate statistics. However, emission rates of individual compounds were often reduced in plants infested with aphids plus hosts compared to those emitted by plants infested with hosts alone. This effect depended on host caterpillar species and plant population and was little affected by aphid infestation duration. Thus, the interactive effect of aphids and hosts on plant volatile production and parasitoid attraction can be dynamic and parasitoid specific. The characteristics of the multi-component volatile blends that determine parasitoid attraction are too complex to be deduced from simple correlative statistical analyses.  相似文献   

6.
Plants defend themselves against herbivory through several means, including the production of airborne volatile organic compounds (VOCs). These VOCs benefit plants by attracting natural enemies of their herbivores. The pea aphid, Acyrthosiphon pisum, is able to feed on its host plant, Vicia faba, without inducing detectable changes in plant VOC emission. Levels of VOCs emission are not significantly different between control plants and those fed upon by aphids for up to 5 days. Using a second herbivore, the beet armyworm caterpillar, Spodoptera exigua, we demonstrate that several expected caterpillar-induced VOCs are reduced when co-infested with pea aphids, thus demonstrating that pea aphids have the ability to inhibit the release of certain VOCs. This study shows, for the first time, that aphids not only avoid triggering plant volatile emission, but also can actively inhibit herbivore-induced volatiles.  相似文献   

7.
The evolution of increased competitive ability (EICA) hypothesis predicts that invasive plant species may escape their specialized natural enemies in their introduced range and subsequently evolve with a decrease in investment in anti-herbivore chemical defenses relative to native conspecifics. We compared the chemical profile of 10 populations of US native and 20 populations of European invasive Solidago gigantea. To test for differences in inducibility between native and invasive populations, we measured secondary chemistry in both damaged and undamaged plants. We also performed bioassays with three specialist and two generalist insect herbivores from four different feeding guilds. There was no evidence that invasive populations had reduced concentrations of sesquiterpenes, diterpenes, or short-chain hydrocarbons (SCH), although significant variation among populations was detected. Sesquiterpene and diterpene concentrations were not influenced by damage to the host plant, whereas SCH concentrations were decreased by damage for both native and invasive plants. Performance of the three specialist insects was not affected by the continental origin of the host plant. However, larval mass of the generalist caterpillar Spodoptera exigua was 37% lower on native plants compared to invasive plants. The other generalist insect, a xylem-tapping spittlebug that occurs on both continents, performed equally well on native and invasive plants. These results offer partial support for the defense predictions of the EICA hypothesis: the better growth of Spodoptera caterpillars on European plants shows that some defenses have been lost in the introduced range, even though our measures of secondary chemistry did not detect differences between continents. Our results show significant variation in chemical defenses and herbivore performance across populations on both continents and emphasize the need for analysis across a broad spatial scale and the use of multiple herbivores.  相似文献   

8.
Induction of plant defense in response to herbivory includes the emission of synomones that attract the natural enemies of herbivores. We investigated whether mechanical damage to Brussels sprouts leaves (Brassica oleracea var.gemmifera) is sufficient to obtain attraction of the parasitoidCotesia glomerata or whether feeding byPieris brassicae caterpillars elicits the release of synomones not produced by mechanically damaged leaves. The response of the parasitoidCotesia glomerata to different types of simulated herbivory was observed. Flight-chamber dual-choice tests showed that mechanically damaged cabbage leaves were less attractive than herbivore-damaged leaves and mechanically damaged leaves treated with larval regurgitant. Chemical analysis of the headspace of undamaged, artificially damaged, caterpillar-infested, and caterpillar regurgitant-treated leaves showed that the plant responds to damage with an increased release of volatiles. Greenleaf volatiles and several terpenoids are the major components of cabbage leaf headspace. Terpenoids are emitted in analogous amounts in all treatments, including undamaged leaves. On the other hand, if the plant is infested by caterpillars or if caterpillar regurgitant is applied to damaged leaves, the emission of green-leaf volatiles is highly enhanced. Our data are in contrast with the induction of more specific synomones in other plant species, such as Lima bean and corn.  相似文献   

9.
Do Caterpillars Secrete “Oral Secretions”?   总被引:1,自引:0,他引:1  
The oral secretions or regurgitant of caterpillars contain potent elicitors of plant induced responses. These elicitors are recognized by host plants to differentiate between simple mechanical injury and the presence of herbivores. In some cases, this level of recognition is highly specific. Despite the in-depth chemical characterization of these elicitors, little is known about the amounts delivered in regurgitant during feeding. In this study, we use a fluorescent dye to label regurgitant in order to visualize caterpillar regurgitation during feeding. The procedure is highly sensitive and allows us to visualize nanoliter amounts of regurgitant. We examined the propensity of larval Helicoverpa zea, Heliothis virescens, Spodoptera exigua, Spodoptera frugiperda, and Manduca sexta to regurgitate on various host plants. These species were selected because they have been among the most intensely studied in terms of elicitors. Our results indicate that most larvae did not regurgitate following a brief feeding bout (∼10 min) during which they ate ca. 0.40 cm2 of leaf. When larvae did regurgitate, it was typically less than 10 nl. This is several orders of magnitude less than is typically used in most studies on oral secretions. The frequency of regurgitation appears to vary depending upon the host plant. Larval H. zea are less likely to regurgitate when feeding on tomato leaves compared to corn mid-whorl tissue. Our results have importance in understanding the role of oral secretions in plant recognition of herbivory. Because caterpillars did not routinely regurgitate during feeding, it is likely that they avoid the elicitation of some plant defensive responses during most feeding bouts.  相似文献   

10.
We considered the effects of plant secondary metabolites on the immune response, a key physiological defense of herbivores against pathogens and parasitoids. We tested the effect of host plant species and ingested iridoid glycosides on the immune response of the grazing, polyphagous caterpillar, Grammia incorrupta (Arctiidae). Individuals of G. incorrupta were fed either one of three plant diets with varying secondary metabolites, or an artificial diet with high or low concentrations of iridoid glycosides. An immune challenge was presented, followed by measurement of the encapsulation response. We failed to detect a significant difference in the immune response of G. incorrupta feeding on diets with varying concentrations of iridoid glycosides, or feeding on different host plants. However, the immune response was lower in caterpillars consuming the artificial diet compared to those consuming the plant diets. When caterpillar performance was measured, pupal weights were lower when caterpillars ingested high concentrations of iridoid glycosides due to a decrease in feeding efficiency. Overall, individuals of G. incorrupta that consumed different plant diets exhibited a high immune response with low variation. We conclude that the immune response of G. incorrupta is adapted to feeding on a variety of plants, which may contribute to the maintenance of this caterpillar’s polyphagous habit.  相似文献   

11.
It is predicted that enemies of insect herbivores may influence the effects of herbivores on their host plants by affecting the choice of plant genotypes. To examine the effect of predators, we conducted two experiments, each with a different caterpillar species (Junonia coenia and Pyrrharctia isabella). Under seminatural conditions, we provided a choice between two genotypes of plantain (Plantago lanceolata) with different levels of iridoid glycosides and used Podisus maculiventris stinkbugs as predators. There were four treatments: no herbivores and no predators, low density of herbivores and no predators, high density of herbivores and no predators, and high density of herbivores plus predators. The caterpillars had little effect on plant growth but did influence the iridoid glycoside concentration. For the Junonia experiment, the concentration of iridoid glycosides was less for plots with a low density of caterpillars (with no predators) compared to the other treatments of caterpillar density. In the Pyrrharctia experiment, catalpol was induced by a high density of caterpillars (with no predators). There were no increases in total iridoid glycosides associated with either herbivore species. The presence of predators had no effect on plant growth or total iridoid glycoside pattern. The lack of effect by predators seems to reflect the relatively large variation in iridoid glycoside concentration among leaf ages, and the herbivores ability to respond to that variation, such that the difference in iridoid glycoside concentrations in the plant genotypes was less important.  相似文献   

12.
Insect herbivores often induce plant volatile compounds that can attract natural enemies. Cotesia marginiventris (Hymenoptera: Braconidae) is a generalist parasitoid wasp of noctuid caterpillars and is highly attracted to Spodoptera exigua-induced plant volatiles. The plasticity of C. marginiventris associative learning to volatile blends of various stimuli, such as host presence, also has been shown, but little is known about how this generalist parasitoid distinguishes between host species of varying suitability. Spodoptera exigua is an excellent host that yields high parasitoid emergence, while Trichoplusia ni serves as a sub-optimal host species due to high pre-imaginal wasp mortality. We have found that S. exigua and T. ni induce different volatile blends while feeding on cotton. Here, wind tunnel flight assays were used to determine the importance of differentially induced volatiles in host-finding by C. marginiventris. We found that, while this generalist parasitoid wasp can distinguish between the two discrete volatile blends when presented concurrently, a positive oviposition experience on the preferred host species (S. exigua) is more important than host-specific volatile cues in eliciting flight behavior towards plants damaged by either host species. Furthermore, wasps with oviposition experience on both host species did not exhibit a deterioration in positive flight behavior, suggesting that oviposition in the sub-optimal host species (T. ni) does not cause aversive odor association.  相似文献   

13.
In this study we tested whether pyrrolizidine alkaloids (PAs) ofCynoglossum officinale serve as antifeedants against herbivores. Total PA N-oxide extracts of the leaves significantly deterred feeding by generalist herbivores. Specialist herbivores did not discriminate between food with high and low PA levels. Three PAs fromC. officinale, heliosupine, echinatine, and 3-acetylechinatine, equally deterred feeding by the polyphagous larvae ofSpodoptera exigua. Although the plants mainly contain PAs in their N-oxide form, reduced PAs deterred feeding byS. exigua more efficiently than PA N-oxides. On rosette plants, the monophagous weevilMogulones cruciger significantly consumed more of the youngest leaves, which had the highest PA level and the highest nitrogen percentage. Larvae ofEthmia bipunctella, which are oligophagous within the Boraginaceae, did not discriminate between leaves. All generalist herbivores tested significantly avoided the youngest leaves with the highest PA levels. In the field, the oldest leaves also were relatively more damaged by herbivores than the youngest leaves. It is hypothesized that the skewed distribution of PAs over the leaves of rosette plants reflects optimal defense distribution within the plant.  相似文献   

14.

In response to herbivory, plants emit volatile compounds that play important roles in plant defense. Herbivore-induced plant volatiles (HIPVs) can deter herbivores, recruit natural enemies, and warn other plants of possible herbivore attack. Following HIPV detection, neighboring plants often respond by enhancing their anti-herbivore defenses, but a recent study found that herbivores can manipulate HIPV-interplant communication for their own benefit and suppress defenses in neighboring plants. Herbivores induce species-specific blends of HIPVs and how these different blends affect the specificity of plant defense responses remains unclear. Here we assessed how HIPVs from zucchini plants (Cucurbita pepo) challenged with different herbivore species affect resistance in neighboring plants. Volatile “emitter” plants were damaged by one of three herbivore species: saltmarsh caterpillars (Estigmene acrea), squash bugs (Anasa tristis), or striped cucumber beetles (Acalymma vittatum), or were left as undamaged controls. Neighboring “receiver” plants were exposed to HIPVs or control volatiles and then challenged by the associated herbivore species. As measures of plant resistance, we quantified herbivore feeding damage and defense-related phytohormones in receivers. We found that the three herbivore species induced different HIPV blends from squash plants. HIPVs induced by saltmarsh caterpillars suppressed defenses in receivers, leading to greater herbivory and lower defense induction compared to controls. In contrast, HIPVs induced by cucumber beetles and squash bugs did not affect plant resistance to subsequent herbivory in receivers. Our study shows that herbivore species identity affects volatile-mediated interplant communication in zucchini, revealing a new example of herbivore defense suppression through volatile cues.

  相似文献   

15.
MAIZE GENES INDUCED BY HERBIVORY AND VOLICITIN   总被引:6,自引:0,他引:6  
  相似文献   

16.
Compensation growth and chemical defense are two components of plant defense strategy against herbivores. In this study, compensation growth and the response of primary and secondary metabolites were investigated in Brassica rapa plants subjected to infestation by two herbivores from contrasting feeding guilds, the phloem-feeding aphid Brevicoryne brassicae and the leaf-feeding caterpillar Pieris brassicae. These specialist herbivores were used at two different densities and allowed to feed for seven days on a young caged leaf. Changes in growth rates were assessed for total leaf area and bulb mass, whereas changes in primary and secondary metabolites were evaluated in young and mature leaves, roots, and bulbs. Mild stress by caterpillars on young plants enhanced mean bulb mass and elicited a contrasting regulation of aliphatic and indolic glucosinolates in the leaves. In contrast, mild stress by aphids enhanced leaf growth and increased glucosinolate concentrations in the bulb, the most important storage organ of B. rapa. A similar mild stress by either herbivore to older plants did not alter plant growth parameters or concentrations of the metabolites analyzed. In conclusion, Brassica plant growth was either maintained or enhanced under mild herbivore stress, and defense patterns differed strongly in response to herbivore type and plant development stage. These results have implications for the understanding of plasticity in plant defenses against herbivores and for the management of Brassica rapa in agroecosystems.  相似文献   

17.
It is well established that plants infested with a single herbivore species can attract specific natural enemies through the emission of herbivore-induced volatiles. However, it is less clear what happens when plants are simultaneously attacked by more than one species. We analyzed volatile emissions of lima bean and cucumber plants upon multi-species herbivory by spider mites (Tetranychus urticae) and caterpillars (Spodoptera exigua) in comparison to single-species herbivory. Upon herbivory by single or multiple species, lima bean and cucumber plants emitted volatile blends that comprised mostly the same compounds. To detect additive, synergistic, or antagonistic effects, we compared the multi-species herbivory volatile blend with the sum of the volatile blends induced by each of the herbivore species feeding alone. In lima bean, the majority of compounds were more strongly induced by multi-species herbivory than expected based on the sum of volatile emissions by each of the herbivores separately, potentially caused by synergistic effects. In contrast, in cucumber, two compounds were suppressed by multi-species herbivory, suggesting the potential for antagonistic effects. We also studied the behavioral responses of the predatory mite Phytoseiulus persimilis, a specialized natural enemy of spider mites. Olfactometer experiments showed that P. persimilis preferred volatiles induced by multi-species herbivory to volatiles induced by S. exigua alone or by prey mites alone. We conclude that both lima bean and cucumber plants effectively attract predatory mites upon multi-species herbivory, but the underlying mechanisms appear different between these species.  相似文献   

18.
Foraging success of parasitoids depends on the utilization of reliable information on the presence of their often, inconspicuous hosts. These parasitic wasps use herbivore-induced plant volatiles (HIPVs) that provide reliable cues on host presence. However, host searching of hyperparasitoids, a group of parasitoids that parasitize the larvae and pupae of other parasitoids, is more constrained. Their hosts do not feed on plants, and often are even concealed inside the body of the herbivore host. Hyperparasitoids recently have been found to use HIPVs of plants damaged by herbivore hosts in which the parasitoid larvae develop. However, hyperparasitoids that search for these parasitoid larvae may be confronted with healthy and parasitized caterpillars on the same plant, further complicating their host location. In this study, we addressed whether the primary hyperparasitoid Baryscapus galactopus uses caterpillar body odors to discriminate between unparasitized herbivores and herbivores carrying larvae of parasitoid hosts. We show that the hyperparasitoids made faster first contact and spent a longer mounting time with parasitized caterpillars. Moreover, although the three parasitoid hosts conferred different fitness values for the development of B. galactopus, the hyperparasitoids showed similar behavioral responses to caterpillar hosts carrying different primary parasitoid hosts. In addition, a two-chamber olfactometer assay revealed that volatiles emitted by parasitized caterpillars were more attractive to the hyperparasitoids than those emitted by unparasitized caterpillars. Analysis of volatiles revealed that body odors of parasitized caterpillars differ from unparasitized caterpillars, allowing the hyperparasitoids to detect their parasitoid host.  相似文献   

19.
20.
Plants respond to insect herbivory by producing dynamic changes in an array of defense-related volatile and nonvolatile secondary metabolites. A scaled response relative to herbivory levels and nutrient availability would be adaptive, particularly under nutrient-limited conditions, in minimizing the costs of expressed defensive pathways and synthesis. In this study, we investigated effects of varying nitrogen (N) fertilization (42, 112, 196, and 280 ppm N) on levels of cotton plant (Gossypium hirsutum) phytohormones [jasmonic acid (JA) and salicylic acid (SA)], terpenoid aldehydes (hemigossypolone, heliocides H1, H2, H3, and H4), and volatile production in response to beet armyworm (Spodoptera exigua) herbivory. Additional bioassays assessed parasitoid (Cotesia marginiventris) host-searching success in response to cotton plants grown under various N fertilizer regimes. At low N input (42 ppm N), herbivore damage resulted in significant increases in local leaf tissue concentrations of JA and volatiles and in systemic accumulation of terpenoid aldehydes. However, increased N fertilization of cotton plants suppressed S. exigua-induced plant hormones and led to reduced production of various terpenoid aldehydes in damaged mature leaves and undamaged young leaves. While increased N fertilization significantly diminished herbivore-induced leaf volatile concentrations, the parasitism of S. exigua larvae by the parasitoid C. marginiventris in field cages did not differ among N treatments. This suggests that, despite significant N fertilization effects on herbivore-induced plant defenses, at short range, the parasitoids were unable to differentiate between S. exigua larvae feeding on physiologically different cotton plants that share large constitutive volatile pools releasable when damaged by herbivores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号