首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liquidus phase equilibrium data are presented for the system Al2O3-Cr2O3-SiO2. The liquidus diagram is dominated by a large, high-temperature, two-liquid region overlying the primary phase field of corundum solid solution. Other important features are a narrow field for mullite solid solution, a very small cristobalite field, and a ternary eutectic at 1580°C. The eutectic liquid (6Al2O3-ICr2O3-93SiO2) coexists with a mullite solid solution (61Al2O3-10Cr2O3-29SiO2), a corundum solid solution (19Al2O3-81Cr2O3), and cristobalite (SO2). Diagrams are presented to show courses of fractional crystallization, courses of equilibrium crystallization, and phase relations on isothermal planes at 1800°, 1700°, and 1575°C. Tie lines were sketched to indicate the composition of coexisting mullite and corundum solid solution phases.  相似文献   

2.
Crystallization sequences of glasses with compositions in the tridymite primary phase field of the MgO-Al2O3-SiO2 system were studied by DTA, X-ray diffraction, and other techniques. Crystallization was catalyzed by the addition of 7 wt% of either ZrO2 or TiO2. Up to 10 wt% CeO2 was also added to some glasses. Metastable solid solutions with the high-quartz structure exhibiting varying lattice parameters commonly occurred at low temperatures, transforming into a high cordierite at higher temperatures. Depending on the composition and heat treatment, other phases also appeared, e.g. Ce2Ti2O4 (Si2O7). The rate of crystallization was markedly dependent on the catalyst. Colloidal precipitation of the catalyst accompanied by bulk crystallization of the glass was observed with ZrO2, but no crystalline TiO2 was detected. In the presence of CeO2, TiO2 was a more effective catalyst than ZrO2. Although CeO2 lowered the melting temperatures of the glass-ceramics, it increased the stability of the glasses and inhibited volume nucleation, causing coarse structures to form on crystallization.  相似文献   

3.
The crystallization of MgO-Al2O3-SiO2-ZrO2 glasses at 1000°C was studied. Isothermal heat treatments of a cordierite-based glass (2MgO.2Al2O3.5SiO2= Mg2Al4Si5O18) with 7 wt% ZrO2 produced surface crystallization of α-cordierite and tetragonal ZrO2 ( t -ZrO2). These phases advanced into the glass by cocrystallization of t -ZrO2 rods in an α-cordierite matrix with a well-defined orientation relation. The t -ZrO2 rods were unstable with respect to diffusional breakup (a Rayleigh instability) and decomposed into rows of aligned ellipsoidal and spheroidal particles. The t -ZrO2 was very resistant to transformation to monoclinic symmetry. With a similar glass containing 15 wt% ZrO2, surface crystallization of α-cordierite and t -ZrO2 was accompanied by internal crystallization of t -ZrO2 dendrites. Transformation of the dendrites to mono-clinic symmetry was observed under some conditions.  相似文献   

4.
Crystallization of stoichiometric KAlSi3O8, RbAlSi3O8, and CsAlSi3O8 gels (single-phase and multiphasic gels) and glasses with and without seeding has been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS). The pure gels of K-, Rb-, and Cs-feldspar compositions crystallized mainly to leucite (KAlSi2O6), a Rb analogue of leucite (RbAlSi2O3), and pollucite (CsAlSi2O6), respectively. The KAlSi3O8 glass also yielded leucite. No feldspar phases crystallized in the temperature region studied. The leucite crystallization temperature was lowered by using multiphasic gels. The crystallization sequence of the KAlSi3O8 glasses and single-phase gels did not change upon seeding with isostructural feldspar crystals. No significant crystallization effects were detected with the use of RbAlSi3O8 and CsAlSi3O8 multiphasic gels. However, K-feldspar (sanidine) was crystallized by using both compositionally and structurally different gels of KAlSi3O8, i.e., multiphasic gels seeded With feldspar crystals. The microstructure of oriented sanidine crystals around the seeds indicated an epitaxial crystallization mechanism.  相似文献   

5.
Effects of a liquid-phase-sintering aid, BaCuO2+ CuO (BCC), on densification and microwave dielectric properties of (Zr0.8Sn0.2)TiO4 (ZST) ceramics have been investigated. The densification kinetics of ZST are greatly enhanced with the presence of 2.5–5 wt% BCC, but become retarded when the amount of BCC increases further. At a given BCC content, moreover, slower densification kinetics are observed with a larger particle size of ZST. The above results are attributed to a chemical reaction taking place at the interface of BCC/ZST during firing. The ZST dissolves into BCC, forming crystalline phases of ZrO2, SnO2, CuO, and BaTi8O16 which reduce the amount of BCC flux available for liquid-phase sintering. The crystallization kinetics become more significant, compared with densification kinetics, with increasing the amount of BCC and the particle sizes of ZST. For samples with 2.5–5 wt% BCC, a high relative sintered density is obtained at 1000°C and the resulting microwave ceramics have a dielectric constant and a value of Q at 7 GHz in the ranges of 35–38 and 2800–5000, respectively.  相似文献   

6.
A possibility to produce microwave (MW) dielectric materials by liquid-phase sintering of fine particles was investigated. Zn3Nb2O8 powders with a grain size 50–300 nm were obtained by the thermal decomposition of freeze-dried Zn–Nb hydroxides or frozen oxalate solutions. The crystallization of Zn3Nb2O8 from amorphous decomposition products was often accompanied by the simultaneous formation of ZnNb2O6. Maximum sintering activity was observed for single-phase crystalline Zn3Nb2O8 powders obtained at the lowest temperature. The sintering of as-obtained powders with CuO–V2O5 sintering aids results in producing MW dielectric ceramics with a density 93%–97% of the theoretical, and a Q × f product up to 36 000 GHz at sintering temperature ( T s)≥680°C. The high level of MW dielectric properties of ceramics was ensured by intensive grain growth during the densification and the thermal processing of ceramics.  相似文献   

7.
The glass formation region, crystalline phases, second harmonic (SH) generation, and Nd:yttrium aluminum garnet (YAG) laser-induced crystallization in the Sm2O3–Bi2O3–B2O3 system were clarified. The crystalline phases of Bi4B2O9, Bi3B5O12, BiBO3, Sm x Bi1− x BO3, and SmB3O6 were formed through the usual crystallization in an electric furnace. The crystallized glasses consisting of BiBO3 and Sm x Bi1− x BO3 showed SH generations. The formation of the nonlinear optical BiB3O6 phase was not confirmed. The formation (writing) region of crystal lines consisting of Sm x Bi1− x BO3 by YAG laser irradiation was determined, in which Sm2O3 contents were∼10 mol%. The present study demonstrates that Sm2O3–Bi2O3–B2O3 glasses are promising materials for optical functional applications.  相似文献   

8.
The crystallization kinetics and mechanism of low-dielectric, low-temperature, cofirable CaO-B2O3-SiO2 glass-ceramics were investigated. Crystalline phases formed during firing included calcium silicates (CaSiO3, Ca3Si2O7, Ca2SiO4) and calcium borate (CaB2O4), with crystalline wollastonite (CaSiO3) the major phase. The crystallization kinetics of wollastonite followed an Avrami equation. The results of the present study showed an apparent activation energy of 200-260 kJ/mol. Combined with the results of reduced growth rate (growth rate × viscosity) and thermal analysis, the rate-controlling mechanism of crystallization appeared to be a two-dimensional surface nucleation growth. As the amount of crystalline wollastonite increased, the dielectric constant decreased, but the thermal expansion coefficient remained relatively unchanged.  相似文献   

9.
Quantitative X-ray diffraction and microscopy were used to study the morphology development and overall crystallization rate between 900° and 990°C of MgO-Al2O3−SiO2 glasses with added ZrO, TiO2, CaF2, or CeO2. Three basic stages of micro-structural development were distinguishable: I, an induction period, II, a spherulitic crystallization stage, and III, a final crystallization stage. The duration of the induction period, the crystallization rate of the high-quartz solid solution, and the microstructures varied markedly with prior nucleation treatment and the type of modifier present in a glass of nearly equal silica content. The roles of major (high-quartz ss , high cordierite) and of minor crystalline and liquid phases in textural development are discussed, and it is postulated that nucleants (ZrO2, TiO2) act also as growth-modifying "impurities" in crystal growth.  相似文献   

10.
Single crystals of phenacite (Be2SiO4), bromellite (BeO), and tridymite (SiO2) were grown from an Li2MoO4-MoO3 flux. Phenacite, with rhombohedral symmetry, grew in three distinct shapes with aspect ratios (length/width) as follows: needles (>3), rods (>1.1 to 1.5), and rhombohedral-faced crystals (=1). The latter grew as single crystals; the others were twinned on the     . For most experiments the temperature was held constant at 1165°C and the Li2MoO4/MoO3 ratio at 1/16. The growth mechanism for crystallization was the evaporation of MoO3. The system produced one to three phases, depending on the BeO/SiO2 ratio. Bromellite grew until a BeO/SiO2 ratio of 0.8 was attained. It grew as a hemipyramidal crystal having a short prism with a curved     top or as a hexagonal plate. The pyramid- and prism-shaped crystals were twinned, although a few hexagonal plates were single. Tridymite grew in small hexagonal plates when the BeO/SiO2 ratio was less than 1.5. The effect of temperature, nucleation, and flux composition on crystal shape, twinning, and occurrence is discussed.  相似文献   

11.
The effect of B2O3 on the sintering temperature and microwave dielectric properties of Ba5Nb4O15 has been investigated using X-ray powder diffraction, scanning electron microscopy, and a network analyzer. Interactions between Ba5Nb4O15 and B2O3 led to formation of second phases, BaNb2O6 and BaB2O4. The addition of B2O3 to Ba5Nb4O15 resulted in lowering the sintering temperature from 1400° to 925°C. Low-fired Ba5Nb4O15 could be interpreted by measuring changes in the quality factor ( Q × f ), the relative dielectric constant (ɛr), and the temperature coefficient of resonant frequency (τf) as a function of B2O3 additions. More importantly, the formation of BaNb2O6 provided temperature compensation. The microwave dielectric properties of low-fired Ba5Nb4O15 had good dielectric properties: Q × f = 18700 GHz, ɛr= 39, and τf= 0 ppm/°C.  相似文献   

12.
A novel porous glass-ceramic with a skeleton of CuTi2(PO4)3 was prepared by controlled crystallization of a glass and subsequent chemical leaching of the resulting dense glass-ceramic. A volume-crystallized dense glass-ceramic composed of CuTi2(PO4)3 and Cu3(PO4)2 whose surface was covered by a CuO thin layer was prepared by reheating a glass with a nominal composition of 50CuO·20TiO230P2O5 (in mol%) glass in air. When the resultant glass-ceramic was leached with dilute H2SO4, Cu3(PO4)2 and CuO phases were dissolved out selectively, leaving a crystalline CuTi2(PO4)3 skeleton. The specific surface area and the average pore radius of the porous glass-ceramic obtained were approximately 45 m2g-1 and 9 nm, respectively. The porous glass-ceramic showed catalytic activity in the conversion reaction of propene into acrolein.  相似文献   

13.
A porous glass-ceramic in the CaO–TiO2—P2O5 system has been prepared by crystallization and subsequent chemical leaching of the corresponding glass. By applying a two-step heat treatment to 45CaO · 25TiO2· 30P2O5 glasses containing a few mol% of Na2O, volume crystallization results in the formation of dense glass-ceramics composed of CaTi4(PO4)6 and β-Ca3(PO4)2 phases. By leaching the resultant glass ceramics with HCI, β-Ca3(PO4)2 is selectively dissolved out, leaving a crystalline CaTi4(PO4)6 skeleton. The surface area and mean pore radius of the porous glass-ceramics were approximately 40 m2/g and 13 nm, respectively.  相似文献   

14.
The crystallization of several Nb2O5-catalyzed glasses in the Na2O.Al2O.SiO2 system was studied using DTA, X-ray diffraction, and electron microscopy. The Nb2O5 was an effective nucleation catalyst; fine-grained body-nucleated glass-ceramic materials containing hexagonal nepheline and NaNbO3 were obtained. The crystallization sequence and final crystalline phases in these compositions were quite different from those found in the equivalent TiO2 analogs. The addition of small amounts of carbides and nitrides at the expense of oxides in the initial glass batch markedly affected the final crystalline phases.  相似文献   

15.
The phase relations in the systems MgO-Y2O3-ZrO2 and CaO-MgO-ZrO2 were established at 1220° and 1420°C. The system MgO-Y2O3-ZrO2 possesses a much-larger cubic ZrO2 solid solution phase field than the system CaO-MgO-ZrO2 at both temperatures. The ordered δ phase (Zr3Y4O12) was found to be stable in the system ZrO2-Y2O3 at 1220°C. Two ordered phases φ1 (CaZr4O9) and φ2 (Ca6Zr19O44) were stable at 1220°C in the system ZrO2-CaO. At 1420°C no ordered phase appears in either system, in agreement with the previously determined temperature limits of the stability for the δ, φ1, and φ2 phases. The existence of the compound Mg3YzO6 could not be confirmed.  相似文献   

16.
Undoped or Y2O3-doped ZrO2 thin films were deposited on self-assembled monolayers (SAMs) with either sulfonate or methyl terminal functionalities on single-crystal silicon substrates. The undoped films were formed by enhanced hydrolysis of zirconium sulfate (Zr(SO4)·4H4O) solutions in the presence of HCl at 70°C. Typically, these films were a mixture of two phases: nanocrystalline tetragonal- ( t -) ZrO2 and an amorphous basic zirconium sulfate. However, films with little or no amorphous material could be produced. The mechanism of film formation and the growth kinetics have been explained through a coagulation model involving homogeneous nucleation, particle adhesion, and aggregation onto the substrate. Annealing of these films at 500°C led to complete crystallization to t -ZrO2. Amorphous Y2O3-containing ZrO2 films were prepared from a precursor solution containing zirconium sulfate, yttrium sulfate (Y2(SO4)38·H2O), and urea (NH2CONH2) at pH 2.2–3.0 at 80°C. These films also were fully crystalline after annealing at 500°C.  相似文献   

17.
Near-field scanning microwave microscopy was applied to investigate the dielectric properties and microstructure in a polycrystalline LaAlO3–TiO2 diffusion couple, which included three regions containing different phases and microstructures. Relatively low (La2Ti4Al18O38), high (α-La2/3TiO3), and intermediate (La4Ti9O24) dielectric constant phases were distinguished at the inter-diffusion interface in optical, backscattered electron scanning electron microscopy, and scanning microwave microscopy (SMM) images. The relative ranking of dielectric constants based on SMM examination was as follows: TiO2>α-La2/3TiO3>La4Ti9O24>LaAlO3>La2Ti4Al18O38. La2/3TiO3 and LaAlO3 will form solid solutions in the LaAlO3-rich region. The reaction paths leading to phase development are discussed.  相似文献   

18.
The crystallization of Al2O3-rich glasses in the system SiO2-Al2O3 which were prepared by flame-spraying and/or splat-cooling was studied by DTA, electron microscopy, and X-ray diffraction. Over a wide range of compositions, the crystallization temperature ( Tx ) remained near 1000°C, changing smoothly with composition. In all cases crystallization of mullite was detected by X-ray diffraction. In the low-Al2O3 region, coarsening of the microstructure during crystallization was observed by electron microscopy. In the high-Al2O3 region mullite and γ-Al2O3 cocrystallized; this behavior may be interpreted as evidence of a cooperative process of crystallization at the respective Tx 's. The crystallite size of the mullite immediately after rapid crystallization increased continuously with increasing Al2O3 content. In light of the Tx data, the adequacy of the evidence for the proposed metastable miscibility gap in the SiO2-Al2O3 system is questioned.  相似文献   

19.
Ba6−3 x Nd8+2 x Ti18O54 ceramic powders were synthesized by the modified Pechini method using ethylenediaminetetraacetic acid (EDTA) as a chelating agent. A purplish red, molecular-level, homogeneously mixed gel was prepared, and transferred into a porous resin intermediate through charring. Single-phase and well-crystallized Ba6−3 x Nd8+2 x Ti18O54 powders were obtained from pulverized resin at a temperature of 900°C for 3 h, without formation of any intermediate phases. Meanwhile, the molar ratio of EDTA to total metal cation concentration had a significant influence on the crystallization behavior of Ba6−3 x Nd8+2 x Ti18O54. The Ba6−3 x Nd8+2 x Ti18O54 ( x = 2/3) ceramics prepared via EDTA precursor have excellent microwave dielectric characteristics: ɛ= 87, Qf = 8710 GHz.  相似文献   

20.
The crystallization behavior of a glass with a composition of 40 wt% 3CaO · P2O5−60 wt% CaO · MgO · 2SiO2 was investigated. The primary crystalline phase was apatite with a dendritic form and ellipsoidal shape. β-(3CaO · P2O5) and CaO · MgO · 2SiO2 were crystallized as samples heated to 990°C, and a three-layer structure was obtained. The development and morphology of this construction were explained by both the surface crystallization of the apatite and CaO · MgO · 2SiO2 and the bulk crystallization of apatite and the CaO · MgO · 2SiO2-β-(3CaO · P2O5) composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号