首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wrinkles, porosity, delaminations and other defects introduced during the manufacturing processing can compromise mechanical performance of advanced composites. This paper describes a method of using fiber optic sensors for monitoring the formation of graphite fiber bending in real time during manufacturing process. Theoretical formulation of the sensor behavior and experimental results are presented. The response of the sensor to composite fiber bending is characterized. The application to analyzing the formation of wrinkles in compression molding of graphite/epoxy composites is demonstrated.  相似文献   

2.
In this paper, we present a wearable sensing glove with embedded hetero-core fiber-optic nerve sensors that detect finger flexion to achieve unconstrained hand motion monitoring. The hetero-core fiber sensor is suited to the wearable sensing glove because it is capable of optical intensity-based measurements with excellent stability and repeatability using single-mode transmission fibers and is unaffected by temperature fluctuations. The hetero-core sensor elements are located on the back of the hand so that they are not affected by random wrinkles in the glove at the joints. As a result, the hetero-core flexion sensor after calibration is capable of detecting the joint angles of the fingers regardless of differences in hand size, and the hetero-core sensing technique enables the sensing glove to be constructed with a minimum number of sensor points. The optical loss performance of the hetero-core sensors reveals monotonic characteristics with respect to the flexion angle of joints. The optical loss is 1.35 dB for a flexion angle of approximately 97.2$^{circ}$ with accuracy of 0.89$^{circ}$ in the detected flexion angle. Real-time hand motion capture was demonstrated by means of the proposed sensing glove without restricting natural human behavior.   相似文献   

3.
Nanomaterial-enabled flexible and stretchable electronics have seen tremendous progress in recent years, evolving from single sensors to integrated sensing systems. Compared with nanomaterial-enabled sensors with a single function, integration of multiple sensors is conducive to comprehensive monitoring of personal health and environment, intelligent human–machine interfaces, and realistic imitation of human skin in robotics and prosthetics. Integration of sensors with other functional components promotes real-world applications of the sensing systems. Here, an overview of the design and integration strategies and manufacturing techniques for such sensing systems is given. Then, representative nanomaterial-enabled flexible and stretchable sensing systems are presented. Following that, representative applications in personal health, fitness tracking, electronic skins, artificial nervous systems, and human–machine interactions are provided. To conclude, perspectives on the challenges and opportunities in this burgeoning field are considered.  相似文献   

4.
光纤在医学和生物学中得到了广泛的应用,从光管道和压力传感器到复杂的化学传感器都与光纤有关.相干光纤束可用于内窥镜成像,而单光纤可用于近红外分层成像和光学相干分层成像.采用光纤还能方便地将光辐射传输到组织内,以激活靶标化学治疗药物.利用平面光纤光导将光波传输到测定部位的化学传感技术可以进行光度和荧光分析.光纤化学传感器还具有表面分子识别位点或化学反应部位,可用于特定分子的检测.这些化学传感器基于表面等离子体共振、干涉、光谱测量或荧光测量等原理.酶的生物识别或抗原抗体结合使光纤传感器可以获得高的特异性.近年来,测定的靶标分子的范围已从简单的气体分子和离子发展到了DNA等大分子.  相似文献   

5.
车辆轮对落轮在线非接触自动检测设备   总被引:1,自引:0,他引:1  
任宏伟  冯常  李声 《光电工程》2004,31(Z1):80-83
研制出一种新的车辆轮对落轮非接触自动检测设备。该设备利用 CCD, PSD 型激光位移传感器、涡流传感器以及数据采集系统完成轮对相关尺寸的数据信号采集,并由工控机对各数据进行融合处理,实现轮对左右两轮饼近十个参数的非接触精确测量。现场使用表明,该设备的测量精度优于±0.1mm 。  相似文献   

6.
Intensity-modulated optical fiber displacement sensors have a potential to be used in a number of applications, including those in industry, military, aerospace, and medicine. Compared with other types of optical fiber sensors, intensity-modulated sensors offer distinctive advantages in that they are usually less complex, inexpensive, and less sensitive to thermal-induced strain. They are able to perform accurate contactless sensing while being of a small size and having a wide dynamic range. A common form of the intensity-modulated optical fiber sensor performs its measurement by making use of a pair of straight parallel optical fibers integrated with a moving reflector modulating the reflected optical signal intensity. Although such an optical modulation configuration exhibits good sensing ability, improvement on its performance could still be made to widen the extent of its application areas. This leads to the development of more effective intensity modulation mechanisms utilizing bent-tip optical fibers and a reflector that can either laterally slide or longitudinally move with reference to the central axis of the fibers. This paper describes such alternative sensing structures and demonstrates the derivations of mathematical models proposed for analyzing their sensing characteristics. Based on experimental studies, the models are verified and validated for the analysis of sensitivity and linearity.   相似文献   

7.
Fericean  S. Droxler  R. 《IEEE sensors journal》2007,7(11):1538-1545
Noncontacting inductive sensors are applicable on a large scale for position detection or travel measurement in industrial applications. Reasons for such broad acceptance in many sectors of industry are noncontact and wear-free sensing of the target (any metal object), reliability and robustness, resistance to fouling, water tightness and compact size. The present work is intended to be a systematic, complete, and consistent presentation of the technological innovations, recent implementations and current trends regarding the analog distance and travel sensing offered by noncontacting inductive sensors for industrial applications. It starts with the fundamentals of inductive sensing and presents the physical basics gained by modern analytic and simulation methods, as well as high-level integrated circuits for inductive sensors. The following sections deal with present-day inductive analog proximity sensors and with the distinctive technological innovation offered by the new inductive linear displacement sensors and with miniaturization results achieved through consistent integration.  相似文献   

8.
The rapid evolution of sensor technology, using techniques such as lasers, machine vision and pattern recognition, provides the potential to greatly improve the Statistical Process Control (SPC) method for monitoring manufacturing processes. This paper studies the method of using on-line sensors to monitor manufacturing processes and compares that method with the control chart method, a widely used SPC tool. Two separate economic models are formulated for using either a sensor or a control chart to monitor a manufacturing process. Then, the two models are compared in a sensitivity analysis with lespect to several process parameters.  相似文献   

9.
Constructing wrinkled structures on the surface of materials to obtain new functions has broad application prospects. Here a generalized method is reported to fabricate multi-scale and diverse-dimensional oxide wrinkles on liquid metal surfaces by an electrochemical anodization method. The oxide film on the surface of the liquid metal is successfully thickened to hundreds of nanometers by electrochemical anodization, and then the micro-wrinkles with height differences of several hundred nanometers are obtained by the growth stress. It is succeeded in altering the distribution of growth stress by changing the substrate geometry to induce different wrinkle morphologies, such as one-dimensional striped wrinkles and two-dimensional labyrinth wrinkles. Further, radial wrinkles are obtained under the hoop stress induced by the difference in surface tensions. These hierarchical wrinkles of different scales can exist on the liquid metal surface simultaneously. Surface wrinkles of liquid metal may have potential applications in the future for flexible electronics, sensors, displays, and so on.  相似文献   

10.
With the prolific use of sensors for manufacturing process monitoring, proper power supply and installation scheme has assumed an increasingly central role. Cable-based sensor powering, while commonly used on the factory floor, faces various real-world constraints. It is desirable that the power required by the sensors be "extracted" from the process being monitored itself to enable "self-energized" sensing. Such a novel design for a wireless pressure sensor for injection molding process monitoring is presented in this paper. The focus is on the energy extraction mechanism from the pressure transients exerted by the polymer melt during the injection molding process to power a piezoelectric signal transmitter, which digitally reconstructs the polymer melt pressure profile. An analytical model examining the energy conversion mechanism due to interactions between the mechanical strain and the electric field developed within the energy extraction device is first established. Using a coupled-field analysis, a numerical model is then developed to evaluate the electromechanical properties dependent upon the geometric effects of the energy extraction device. The two models are then compared with experimental results obtained from a functional prototype to evaluate the relevance of the assumptions made and the modeling accuracy. Preliminary experimental results describing the integration of the energy extraction device with the ultrasonic transmitter and the subsequent transmission of pressure information acoustically through a block of steel are also presented. The presented design introduces a new generation of self-energized sensors that can be employed for the condition monitoring of a wide range of high-energy manufacturing processes.  相似文献   

11.
Humans possess manual dexterity, motor skills, and other physical abilities that rely on feedback provided by the somatosensory system. Herein, a method is reported for creating soft somatosensitive actuators (SSAs) via embedded 3D printing, which are innervated with multiple conductive features that simultaneously enable haptic, proprioceptive, and thermoceptive sensing. This novel manufacturing approach enables the seamless integration of multiple ionically conductive and fluidic features within elastomeric matrices to produce SSAs with the desired bioinspired sensing and actuation capabilities. Each printed sensor is composed of an ionically conductive gel that exhibits both long‐term stability and hysteresis‐free performance. As an exemplar, multiple SSAs are combined into a soft robotic gripper that provides proprioceptive and haptic feedback via embedded curvature, inflation, and contact sensors, including deep and fine touch contact sensors. The multimaterial manufacturing platform enables complex sensing motifs to be easily integrated into soft actuating systems, which is a necessary step toward closed‐loop feedback control of soft robots, machines, and haptic devices.  相似文献   

12.
随着可穿戴柔性电子技术的发展, 高灵敏度和宽感应范围的柔性力敏传感器的需求量逐渐增大, 如何选择兼具高导电性和良好柔性的材料作为传感器的敏感材料是获得高性能传感器的关键。近年来, MXene材料因其导电性好、柔韧性高、亲水性好以及合成可控等优点成为一种极具潜力的导电敏感材料。本文就MXene基柔性力敏传感器的类型、敏感材料的微结构设计方式、传感性能及传感机理等方面的研究进展进行了阐述和总结。  相似文献   

13.
Moro EA  Todd MD  Puckett AD 《Applied optics》2011,50(35):6526-6535
A variety of intensity-modulated optical displacement sensor architectures have been proposed for use in noncontacting sensing applications, with one of the most widely implemented architectures being the bundled displacement sensor. To the best of the authors' knowledge, the arrangement of measurement fibers in previously reported bundled displacement sensors has not been configured with the use of a validated optical transmission model. Such a model has utility in accurately describing the sensor's performance a priori and thereby guides the arrangement of the fibers within the bundle to meet application-specific performance needs. In this paper, a recently validated transmission model is used for these purposes, and an optimization approach that employs a genetic algorithm efficiently explores the design space of the proposed bundle sensor architecture. From the converged output of the optimization routine, a bundled displacement sensor configuration is designed and experimentally tested, offering linear performance with a sensitivity of -0.066 μm(-1) and displacement measurement error of 223 μm over the axial displacement range of 6-8 mm. It is shown that this optimization approach may be generalized to determine optimized bundle configurations that offer high-sensitivity performance, with an acceptable error level, over a variety of axial displacement ranges. This document has been approved by Los Alamos National Laboratory for unlimited public release (LA-UR 11-03413).  相似文献   

14.
Micromachined water vapor sensors: a review of sensing technologies   总被引:1,自引:0,他引:1  
The measurement of water vapor is important in many applications ranging from predicting changes in the weather to ensuring heating and cooling comfort in homes. In manufacturing, water vapor measurements help to control performance properties of engineered materials and optimize fuel efficiency in power generation. This paper presents a technology review of water vapor sensors and manufacturing techniques. Micromachining, more commonly known as MEMS or microelectromechanical systems, is an enabling technology based upon standard semiconductor manufacturing. MEMS technology makes possible solid-state sensors with greatly reduced power consumption and low operating voltage that are fully compatible with digital electronics and can be manufactured in high volumes at low cost. A water vapor microsensor just becomes another part on the circuit board. A "technology roadmap" for water vapor microsensors is defined where the sensing technologies have been organized into four major transduction schemes: capacitive, mass-sensitive, optical and resistive. Sensing element type, key geometric features and excitation scheme provides further classification. Operating principles and general performance characteristics are also presented  相似文献   

15.
Portable humidity sensors with ultrafast responses fabricated in wearable devices have promising application prospects in disease diagnostics, health status monitoring, and personal healthcare data collecting. However, prolonged exposures to high‐humidity environments usually cause device degradation or failure due to excessive water adsorbed on the sensor surface. In the present work, a graphene film based humidity sensor with a hydrophobic surface and uniformly distributed ring‐like wrinkles is designed and fabricated that exhibits excellent performance in breath sensing. The wrinkled morphology of the graphene sensor is able to effectively prevent the aggregation of water microdroplets and thus maximize the evaporation rate. The as‐fabricated sensor responds to and recovers from humidity in 12.5 ms, the fastest response of humidity sensors reported so far, yet in a very stable manner. The sensor is fabricated into a mask and successfully applied to monitoring sudden changes in respiratory rate and depth, such as breathing disorder or arrest, as well as subtle changes in humidity level caused by talking, cough and skin evaporation. The sensor can potentially enable long‐term daily monitoring of breath and skin evaporation with its ultrafast response and high sensitivity, as well as excellent stability in high‐humidity environments.  相似文献   

16.
We present a new wave-front sensing technique for adaptive optics based on use of several wave-front sensors dedicated to the sensing of a different range of spatial frequencies. We call it a hierarchical wave-front sensor. We present the concept of a hierarchical wave-front sensor and apply it to the Shack-Hartmann sensor. We show the gain that is expected with two Shack-Hartmann sensors. We obtain a gain that increases with the size of the largest sensor, and we detail the application of hierarchical wave-front sensing to extreme adaptive optics and extremely large telescopes.  相似文献   

17.
Levi O  Lee TT  Lee MM  Smith SJ  Harris JS 《Applied optics》2007,46(10):1881-1889
We review integrated optical sensors for functional brain imaging, localized index-of-refraction sensing as part of a lab-on-a-chip, and in vivo continuous monitoring of tumor and cancer stem cells. We present semiconductor-based sensors and imaging systems for these applications. Measured intrinsic optical signals and tissue optics simulations indicate the need for high dynamic range and low dark-current neural sensors. Simulated and measured reflectance spectra from our guided resonance filter demonstrate the capability for index-of-refraction sensing on cellular scales, compatible with integrated biosensors. Finally, we characterized a thermally evaporated emission filter that can be used to improve sensitivity for in vivo fluorescence sensing.  相似文献   

18.
Aldehydes are usually determined via chemical derivatization using a chromogenic and fluorogenic reagent followed by chromatographic separation and UV-visible detection. As a consequence, continuous on-line monitoring is impossible. Following our concept of reversible chemical reactions as the basis of optical sensors, we have investigated N-amino-N'-(1-hexylheptyl)perylene-3,4:9,10-tetracarboxylbisimide for aldehyde sensing. The fluorogenic reactand has been embedded in plasticized PVC, and the resulting thin layers have been exposed to aqueous samples of aliphatic aldehydes and ketones. The reactand exhibits a pronounced increase in fluorescence upon interaction with aldehydes since the chemical reaction causes a dequenching of perylene fluorescence. Upon interaction with aqueous propionaldehyde, sensor layers typically exhibit a dynamic range from 5 to 100 mM propionaldehyde, and the limit of detection amounts to 0.08 mM. The forward and reverse response time (t95) for a decade change in activity is in the range of 2-7 min, when measured at pH 2.5. The selectivity of sensor layers toward aldehydes correlates with their lipophilicity in that aldehydes with higher lipophilicity are more efficiently extracted into the polymer layer.  相似文献   

19.
This paper demonstrates a new kind of hydrogen sensor using palladium (Pd) nanowires. Hydrogen sensors using Pd metal have usually been utilizing the incremental change in electrical resistance of Pd upon hydrogen incorporation. Unlike the conventional Pd hydrogen sensors, however, the electrical resistance of the present Pd nanowire sensor decreases when hydrogen is incorporated into Pd nanowires. It is considered to be due to swelling of the nanowires as the result of hydrogen incorporation and subsequent narrowing of gaps between the nanowires, even though each nanowire should have had the higher resistance inherently. Because of extraordinarily high surface area of nanowires, the performance of sensing the hydrogen concentration was found to superior by far to the conventional Pd sensors. The response and recovery times are quite fast to be about 0.7 and 20 s, respectively and the sensing range of 0.2 /spl sim/ 1% 1% hydrogen concentration is suitable for the hydrogen safety sensors. The sensor introduced in this paper is unique with regard to both the sensing mechanism and performance.  相似文献   

20.
Textile-based sensors have been widely studied for wearable monitoring. The sensor systems demand a large sensing area, flexibility, and scalable fabrication method. Herein, single-layer piezoresistive sensors are developed by a machine stitching technique using metallic and graphene nanoplatelets-coated conductive threads and fabrics. The pressure-sensing mechanism is based on measuring the electrical resistance due to the change in the contact area between the conductive thread and fabric as pressure on the sensor varies. The single-layer sensor design provides flexibility and overcomes the physical drift of the sensor during human activities, which enhances wearability and performance. The coated textiles are characterized by scanning electron microscopy and Fourier-transform infrared spectroscopy. Physical and electromechanical tests are performed on the sensors to evaluate their wearability and sensing performance. The sensors exhibit a wide working range of up to 100 kPa and good sensitivity with excellent durability against repeated mechanical deformations. The application potential of the sensors in real-time monitoring is demonstrated by embedding them into clothing as a wearable device. Moreover, the effectiveness of the sensors is tested for posture correction. This article suggests a novel technique to fabricate durable, flexible, and highly efficient pressure sensors for smart wearable applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号