首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
图像配准有很多种算法,在众多算法中尺度不变特征变换(SIFT)算法具有良好的尺度,光照,空间旋转不变性,被广泛的运用于图像配准的应用中。本文对SIFT算法的基本步骤做了简单的阐述,并且在运用在图像配准的应用上。实验结果表明该算法具有较强的配准能力,是一种较好的配准算法。  相似文献   

2.
针对高分辨率遥感图像中提取的特征点数目过大且易存在误匹配点的问题,提出了一种粗配准和精配准相结合的高分辨率遥感图像配准算法.首先对图像降采样处理后,提取大尺度空间下的SIFT特征点,求得仿射变换模型完成图像粗配准;然后对图像进行分块,利用SIFT方法对每幅子块图像提取特征点,并找到对应子块图像之间的匹配点对;之后利用特征点构建Delaunay三角网,计算每对子块图像之间的三角形相似度,构成相似矩阵,从中挑选相似度大的三角形对以构成精确匹配点对;最后利用得到的精确匹配点对实现最终的图像配准.该算法能够减少提取的特征点数且剔除更多的错误匹配点,从而进一步提高精确匹配点率.实验结果表明了算法的有效性.  相似文献   

3.
基于GPU的现代并行优化算法   总被引:2,自引:2,他引:0  
针对现代优化算法在处理相对复杂问题中所面临的求解时间复杂度较高的问题,引入基于GPU的并行处理解决方法。首先从宏观角度阐释了基于计算统一设备架构CUDA的并行编程模型,然后在GPU环境下给出了基于CUDA架构的5种典型现代优化算法(模拟退火算法、禁忌搜索算法、遗传算法、粒子群算法以及人工神经网络)的并行实现过程。通过对比分析在不同环境下测试的实验案例统计结果,指出基于GPU的单指令多线程并行优化策略的优势及其未来发展趋势。  相似文献   

4.
为了准确配准印鉴图像,为高仿真印鉴的真伪识别做好准备,提出利用印鉴边缘图像SIFT(Scale Invariant Feature Transform)特征的相似性和空间关系相结合的配准方法。采用邻域搜索法提取待测印鉴与预留印鉴的二值边缘图像,在印鉴边缘图像中提取SIFT特征,并根据相似性匹配。利用印鉴边缘图像SIFT特征匹配点对的空间关系剔除错误匹配,提高配准效率。利用RANSAC方法估计两印鉴的变换模型。分别配准具有不同形状及印文内容的10组真印鉴图像和10组假印鉴图像。将所得结果与其他两种典型的配准方法作比较。以两印鉴配准后不重合边缘点之间的平均距离评价配准的准确性,以最大距离量化配准后出现的最大差异。实验结果表明,该方法可以准确配准待测印鉴与预留印鉴图像,对印鉴形状、笔画结构无任何限制,配准速度比直接利用印鉴二值图像SIFT特征的配准方法提高一倍。  相似文献   

5.
针对SIFT(尺度不变特征变换)算法提取的特征点不纯、易受噪声等因素干扰的问题,提出在SIFT算法提取特征点之前对图像进行预处理,排除部分外界干扰。针对SIFT算法中128维的高维度特征描述符导致匹配速度降低,提出一种基于分层区域的方法降低描述符维度,缩短算法运行时间。针对SIFT算法匹配过程中选取固定阈值不具有广泛适用性的问题,提出一种自适应阈值的方法,解决设置固定阈值不能适用所有图像的问题,提高匹配准确率。实验结果证明,改进的算法能提高匹配准确率和匹配效率,增强算法的鲁棒性和可靠性,并且适用性广泛。  相似文献   

6.
字符串匹配是计算科学中研究最广泛的问题之一,已成为信息检索和生物计算等领域的核心操作。然而受限于CPU的计算能力和存储器访问带宽,传统的串行字符串匹配算法难以进一步提升性能。GPU在计算能力和存储器访问带宽上有很大提升,已经在很多应用上取得了卓越成效。gAC作为一种基于GPU的并行AC算法,针对GPU的SIMT(Single-Instruction Multiple-Thread)以及合并存储器访问的技术特点,采取了减少条件分支、合并访问全局存储器等优化方法,使得在C1060GPU上的字符串扫描速度达到51Gb/s,比基于CPU的串行算法提升了28倍。  相似文献   

7.
一种改进的SIFT图像配准方法   总被引:1,自引:2,他引:1       下载免费PDF全文
赵垒  侯振杰 《计算机工程》2010,36(12):226-228
针对普通SIFT算法效率因128维的特征点描述算子而降低的问题,提出一种改进的SIFT算法,利用圆环的特性同时对每一个特征向量进行序列化,以保证物体旋转不变性,在降低描述算子维数的基础上,利用遍历搜索查找样本特征点的最近邻和次近邻特征点。实验结果表明,当图像存在不同程度的几何变形、辐射畸变和噪声影响时,改进算法更稳定、更快速。  相似文献   

8.
基于GPU的大规模海浪实时绘制   总被引:1,自引:0,他引:1  
海浪建模与绘制是近二十年来计算机图形学领域的一个经典问题,同时,随着硬件的发展,尤其是图形处理器(GPU)以大大超过摩尔定律的速度高速发展和其高速计算能力、并行性、其可编程功能,使得基于GPU的通用计算成为一个新研究热点.利用GPU的高速计算能力和可编程功能,解决海浪模拟中的复杂计算问题,提出一种基于图形硬件的大规模海浪实时绘制方法.首先,对图形处理器进行了概述.然后,基于Gerstner-Rankine模型生成海洋高度场,采用屏幕细分自适应算法对数字地球上的可视海洋表面进行采样,利用图形处理单元的可编程特性进行顶点和颜色计算,模拟实时球面海浪效果.实验结果表明,基于GPU的方法可以在普通PC图形硬件上实现大规模海浪的交互漫游.  相似文献   

9.
针对尺度不变特征变换(Scale Invariant Feature Transform,SIFT)算法图像配准时间长、匹配率低等问题,提出了重合区域图像极值特征提取法以及图像降采样特征配准法。在特征匹配的过程中,重点考虑重叠区域的特征匹配点对极值一致性约束条件,并利用差分尺度空间的局部单极值,以减小冗余特征点,节约特征提取与匹配时间;在此基础上,以图像尺度大小(选择180×180)作为缩放约束,对图像进行同比例插值缩小,并根据缩放后图像与原始图像变换矩阵之间的关系,计算出原始图像变换矩阵,实现图像的快速、精确配准。利用实例验证了所提方法的有效性和可行性。  相似文献   

10.
为了解决人群遮挡严重、光照突变等恶劣环境下人群计数准确率低的问题,提出基于混合高斯模型(GMM)和尺度不变特征变换(SIFT)特征的人群数量统计分析新方法。首先,基于GMM提取运动人群,并采用灰度共生矩阵(GLCM)和形态学方法去除背景中移动的小物体和较密集的噪声等非人群前景,针对GMM算法提出了一种效率较高的并行模型;接着,检测运动人群的SIFT特征点作为人群统计的基础,基于二值图像的特征提取大大减少了执行时间;最后,提出基于人群特征数和人群数量进行统计分析的新方法,选择不同等级的人群数量的数据集分别进行训练,统计得出平均单个特征点数,并对不同密度的行人进行计数实验。算法采用基于GPU多流处理器进行加速,并针对所提算法在统一计算设备架构(CUDA)流上任务的有效调度的方法进行分析。实验结果显示,相比单流提速31.5%,相比CPU提速71.8%。  相似文献   

11.
姜超  耿则勋  娄博  魏小峰  沈忱 《计算机科学》2013,40(12):295-297,307
SIFT算法因具有旋转、缩放以及平移不变性而在影像配准和基于影像的三维重建领域得到广泛应用。但该算法复杂度较高,在CPU上执行的效率不高,难以满足对实时性要求较高的应用。在深入分析SIFT算法原理的基础上,针对该算法提取特征的多量性和特征向量的高维性,将该算法进行了并行化改造以利用GPU强大的并行计算能力,并与CPU上实现的SIFT算法进行了比较。实验证明,基于GPU的SIFT算法执行效率大幅提升,平均可以达到10倍以上的加速比。  相似文献   

12.
针对目前基于GPU的FIR算法速度低、扩展性差的缺点,提出一种高速的多通道FIR数字滤波的并行算法,并利用平衡并行运算负载的技术以及降低内存访问密度的方法进行加速.该算法采用矩阵乘法的并行运算技术在GPU上建立并行滤波模型,通过每个线程在单个指令周期内执行2个信号运算,实现了多通道信号的高速滤波.实验结果表明,在GTX260+平台上,采用文中算法的平均加速比达到了203,效率超过40%,并且具有更好的扩展性.  相似文献   

13.
高分辨率显示设备的发展意味着需要高分辨率的图象与之匹配。本文通过GPU,实现了一种实时超分辨率,使分辨率较低的视频资料在高分辨率显示设备上有较好的显示效果。  相似文献   

14.
二维扩散方程的GPU加速   总被引:1,自引:0,他引:1  
近几年来,GPU因拥有比CPU更强大的浮点性能备受瞩目。NVIDIA推出的CUDA架构,使得GPU上的通用计算成为现实。本文将计算流体力学中Benchmark问题的二维扩散方程移植到GPU,并采用了全局存储和纹理存储两种方法。结果显示,当网格达到百万量级的时候,得到了34倍的加速。  相似文献   

15.
自碰撞检测是织物实时模拟的瓶颈.利用最新的图形硬件特性,设计了织物模拟的自碰撞检测算法.该算法以质点包围球为基本计算单元,仅保存计算得到的第一次发生碰撞的信息,而不需要计算出所有的碰撞对.算法在CUDA平台上实现,通过对核函数的一次调用即可完成自碰撞检测,算法复杂度为O(n).将算法用于由大规模质点构成的织物模拟过程中,试验表明,算法的GPU实现比相应的CPU实现性能提高18倍以上,与两遍渲染算法相比,平均性能也提高了20%左右.  相似文献   

16.
CUDA高性能计算并行编程   总被引:1,自引:0,他引:1  
针对GPU的计算处理能力,提出了用GPU解决高性能计算的问题,其中包括详细描述CUDA编程的方法、优化处理原则等。采用了对比实验,结果表明了CUDA在并行计算上有很强的能力,为GPU的通用计算提供了新的方法和思路。  相似文献   

17.
GPU在海洋环流模式POP中的应用   总被引:1,自引:0,他引:1  
在CUDA(Compute Unified Device Architecture)架构下将GPU(Graphic Processing Unit)计算首次应用到海洋环流模式POP(Parallel Ocean Program)中.测试结果表明:无论高分辨率还是低分辨率,GPU都能够提高海洋环流数值模式POP的计算速度,GPU加速比最低都在1.5倍以上,最高可以超过2.2倍;并且随着模式使用线程数目的增多,GPU的加速比在降低,但是GPU利用效率在增长.  相似文献   

18.
为了利用GPU强大的并行处理能力提高图像拷贝检测速度,提出一种基于GPU的图像拷贝检测方法.首先结合GPU的架构设计了尺度不变特征点提取算法——Harris-Hessian算法,通过在低尺度图像上检测特征点,在图像的一系列尺度空间中根据Hessian矩阵的行列式精确确定特征点的位置和尺度,显著地减少了像素级的计算量,并具有更好的并行性;在此基础上建立了图像拷贝检测系统,检测速度得到显著提升.实验结果表明,与基于CPU实现的传统算法相比,Harris-Hessian算法可以获得10~20倍的加速比,并可保证较高的检测精度.在11 250幅的图像库中,使用文中系统检测一幅640×480图像平均只需19.8 ms,并具有95%的正确率,满足了大规模数据下实时应用的需求.  相似文献   

19.
在地震资料的处理应用中,逆时偏移等处理技术由于计算资源的需求量巨大,而不能在实际生产中被广泛采用。GPU及CUDA编程架构的引入大幅提高其运算性能,是解决类似技术应用的有效途径。同时,GPU独特的物理特性使得一些应用不仅不能提高性能,甚至使性能急剧下降。通过逆时偏移技术应用实例来说明GPU的加速效果,同时将其和常规流程进行对比和分析给出应用软件的GPU适用性评价方法。  相似文献   

20.
图形处理器(Graphic Processing Unit),简称GPU,是针对多线程程序对吞吐量进行优化的处理器,在硬件设计上属于众核架构,非常适合于大规模并行计算任务。JPEG图像压缩作为计算密集型的矩阵数据运算,用GPU技术对JPEG算法进行实现,能充分发挥GPU的并行处理能力,极大提高编码效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号